(New page: If X1(t) -> system => y1(t) and X2(t) -> system => y2(t) implies a*X1(t)+ b*X2(t) -> system => a*y1(t) + b*y2(t) for any complex number a,b then the system is called linear. ---- E.g...)
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
If X1(t) -> system => y1(t)
+
If X1(t) -> system => y1(t) and X2(t) -> system => y2(t) implies a*X1(t)+ b*X2(t) -> system => a*y1(t) + b*y2(t)
 
+
and X2(t) -> system => y2(t)
+
 
+
implies a*X1(t)+ b*X2(t) -> system => a*y1(t) + b*y2(t)
+
  
 
for any complex number a,b
 
for any complex number a,b
Line 12: Line 8:
  
 
E.g.
 
E.g.
 +
 
y(t)=<math>x^2 (t)</math> is non-linear
 
y(t)=<math>x^2 (t)</math> is non-linear
 +
 +
 +
Since a*y1(t) + b*y2(t)=<math>(a*X1(t)+ b*X2(t))^2= (a*X1(t))^2+ 2*(a*X1(t)*(b*X2(t)) + (b*X2(t))^2 </math>
 +
 +
 +
 
y(t)=2(x)t is linear
 
y(t)=2(x)t is linear
 +
 +
Since a*y1(t) + b*y2(t)=2*(a*X1(t)+ b*X2(t))= 2*a*X1(t)+ 2*b*X2(t)

Latest revision as of 15:05, 10 September 2008

If X1(t) -> system => y1(t) and X2(t) -> system => y2(t) implies a*X1(t)+ b*X2(t) -> system => a*y1(t) + b*y2(t)

for any complex number a,b

then the system is called linear.


E.g.

y(t)=$ x^2 (t) $ is non-linear


Since a*y1(t) + b*y2(t)=$ (a*X1(t)+ b*X2(t))^2= (a*X1(t))^2+ 2*(a*X1(t)*(b*X2(t)) + (b*X2(t))^2 $


y(t)=2(x)t is linear

Since a*y1(t) + b*y2(t)=2*(a*X1(t)+ b*X2(t))= 2*a*X1(t)+ 2*b*X2(t)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett