Line 21: Line 21:
 
Proof:
 
Proof:
  
<math>u[n]=\delta[n]-\delta[n-1]</math>
+
<math>u[n]=\delta[n]-\delta[n-N]</math> where <math>N=1</math>
  
      <math>\delta[n] \to sys \to \delta[n-1] \to</math>
+
            <math>\delta[n] \to sys \to \delta[n-1] \to</math>
                                <math>- \to \delta[n-1]-4\delta[n-2]</math>
+
                                      <math>- \to \delta[n-1]-\delta[n-2]=u[n-1]</math>
   <math>\delta[n-1] \to sys \to 4\delta[n-2] \to</math>
+
   <math>\delta[n-N] \to sys \to \delta[n-N-1] \to</math>

Latest revision as of 10:47, 11 September 2008

Part a

System: $ X_{k}[n]=\delta[n-k] \to Y_{k}[n] = (k+1)^2 \delta [n-(k+1)] $

Time-delay: $ X_{k}[n]=\delta[n-k] \to X_{k}[n-N]=\delta[n-N-k] $


$ X_{k}[n] \to timedelay \to sys \to Z_{k}[n]=(k+1)^2 \delta [n-N-(k+1)] $

$ X_{k}[n] \to sys \to timedelay \to Z_{k}[n]=(k+1)^2 \delta [n-N-(k+1)] $


Since $ (k+1)^2 \delta [n-N-(k+1)] $ is equal to $ (k+1)^2 \delta [n-N-(k+1)] $, the system is time-invariant.

Part b

In order for $ Y[n]=u[n-1] $ to be true, $ X[n]=u[n] $ must also be true.

Proof:

$ u[n]=\delta[n]-\delta[n-N] $ where $ N=1 $

           $ \delta[n] \to sys \to \delta[n-1] \to $
                                     $ - \to \delta[n-1]-\delta[n-2]=u[n-1] $
 $ \delta[n-N] \to sys \to \delta[n-N-1] \to $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood