(New page: == Definition == <font size="3">If the cascade <math>x(t) \to timedelay \to sys \to z(t)</math> yields the same output as the cascade <math>x(t) \to sys \to timedelay \to z(t)</math> for ...)
 
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
== Example of Time-Invariant System ==
 
== Example of Time-Invariant System ==
  
 +
<font size="3">System: <math>x(t) \to y(t) = 3x(t)</math>
  
 +
 +
 +
<math>x(t) \to timedelay \to sys \to z(t)=3x(t-t_{0})</math>
 +
 +
<math>x(t) \to sys \to timedelay \to z(t)=3x(t-t_{0})</math>
 +
 +
 +
 +
Since <math>3x(t-t_{0})</math> is equal to <math>3x(t-t_{0})</math>, the system is time-invariant.</font>
  
 
== Example of Non-Time-Invariant System ==
 
== Example of Non-Time-Invariant System ==
  
<font size="3">Equations: <math>y(t) = 3x(t)</math> and <math>x(t) = 3t</math>
+
<font size="3">System: <math>x(t) \to y(t) = x(2t)</math>
 +
 
 +
 
 +
<math>x(t) \to timedelay \to sys \to z(t)=x(2(t-t_{0}))</math>
 +
 
 +
<math>x(t) \to sys \to timedelay \to z(t)=x(2t-t_{0})</math>
  
<math>x(t) \to timedelay \to sys \to z(t)=3(3t-t_{0})</math>
 
  
<math>x(t) \to sys \to timedelay \to z(t)=9t-t_{0}</math>
 
  
Since <math>3(3t-t_{0})</math> does not equal <math>9t-t_{0}</math>, the system is not time-invariant.</font>
+
Since <math>x(2(t-t_{0}))</math> does not equal <math>x(2t-t_{0})</math>, the system is not time-invariant.</font>

Latest revision as of 13:20, 10 September 2008

Definition

If the cascade $ x(t) \to timedelay \to sys \to z(t) $ yields the same output as the cascade $ x(t) \to sys \to timedelay \to z(t) $ for any $ t_{0} $, then the system is called "time invariant".

Example of Time-Invariant System

System: $ x(t) \to y(t) = 3x(t) $


$ x(t) \to timedelay \to sys \to z(t)=3x(t-t_{0}) $

$ x(t) \to sys \to timedelay \to z(t)=3x(t-t_{0}) $


Since $ 3x(t-t_{0}) $ is equal to $ 3x(t-t_{0}) $, the system is time-invariant.

Example of Non-Time-Invariant System

System: $ x(t) \to y(t) = x(2t) $


$ x(t) \to timedelay \to sys \to z(t)=x(2(t-t_{0})) $

$ x(t) \to sys \to timedelay \to z(t)=x(2t-t_{0}) $


Since $ x(2(t-t_{0})) $ does not equal $ x(2t-t_{0}) $, the system is not time-invariant.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett