(New page: == Definition == <font size="3">If the cascade <math>x(t) \to timedelay \to sys \to z(t)</math> yields the same output as the cascade <math>x(t) \to sys \to timedelay \to z(t)</math> for ...) |
|||
(One intermediate revision by the same user not shown) | |||
Line 5: | Line 5: | ||
== Example of Time-Invariant System == | == Example of Time-Invariant System == | ||
+ | <font size="3">System: <math>x(t) \to y(t) = 3x(t)</math> | ||
+ | |||
+ | |||
+ | <math>x(t) \to timedelay \to sys \to z(t)=3x(t-t_{0})</math> | ||
+ | |||
+ | <math>x(t) \to sys \to timedelay \to z(t)=3x(t-t_{0})</math> | ||
+ | |||
+ | |||
+ | |||
+ | Since <math>3x(t-t_{0})</math> is equal to <math>3x(t-t_{0})</math>, the system is time-invariant.</font> | ||
== Example of Non-Time-Invariant System == | == Example of Non-Time-Invariant System == | ||
− | <font size="3"> | + | <font size="3">System: <math>x(t) \to y(t) = x(2t)</math> |
+ | |||
+ | |||
+ | <math>x(t) \to timedelay \to sys \to z(t)=x(2(t-t_{0}))</math> | ||
+ | |||
+ | <math>x(t) \to sys \to timedelay \to z(t)=x(2t-t_{0})</math> | ||
− | |||
− | |||
− | Since <math> | + | Since <math>x(2(t-t_{0}))</math> does not equal <math>x(2t-t_{0})</math>, the system is not time-invariant.</font> |
Latest revision as of 13:20, 10 September 2008
Definition
If the cascade $ x(t) \to timedelay \to sys \to z(t) $ yields the same output as the cascade $ x(t) \to sys \to timedelay \to z(t) $ for any $ t_{0} $, then the system is called "time invariant".
Example of Time-Invariant System
System: $ x(t) \to y(t) = 3x(t) $
$ x(t) \to timedelay \to sys \to z(t)=3x(t-t_{0}) $
$ x(t) \to sys \to timedelay \to z(t)=3x(t-t_{0}) $
Since $ 3x(t-t_{0}) $ is equal to $ 3x(t-t_{0}) $, the system is time-invariant.
Example of Non-Time-Invariant System
System: $ x(t) \to y(t) = x(2t) $
$ x(t) \to timedelay \to sys \to z(t)=x(2(t-t_{0})) $
$ x(t) \to sys \to timedelay \to z(t)=x(2t-t_{0}) $
Since $ x(2(t-t_{0})) $ does not equal $ x(2t-t_{0}) $, the system is not time-invariant.