(Linear System Example)
(Linear System Example)
Line 19: Line 19:
  
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
 
<math> \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} </math>
 +
 +
  
 
let <math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math>
 
let <math> \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} </math>

Revision as of 09:19, 10 September 2008

Linear System Definition

A system takes a given input and produces an output. For the system to be linear it must preserve addition and multiplication. In mathematical terms:

$ x(t+t0)=x(t) + x(t0) $

and

$ x(k*t)=k*x(t) $

Linear System Example

Consider the system $ \mathbf{y}[b]=\mathbf{b}\cdot\mathbf{M} $ where $ \mathbf{y}[b] = \begin{bmatrix}7 & 12 \end{bmatrix} $, $ \mathbf{b} = \begin{bmatrix}4 & 1 \end{bmatrix} $, and

$ \mathbf{M} = \begin{bmatrix}1 & 2 \\ 3 & 4 \\ \end{bmatrix} $


let $ \mathbf{a} = \begin{bmatrix}2 & 2 \end{bmatrix} $


If the system is linear these properties hold:

|- |$ y[a+b]=f[a]+f[b] \, $ |- |$ f(ax)=af(x) \, $ |

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett