Line 11: Line 11:
 
Then<br>
 
Then<br>
 
<math> y(2t) = x(2t) </math><br>
 
<math> y(2t) = x(2t) </math><br>
 +
 +
== Example of Time-Invariant System ==
 +
<br>
 +
<math> y = sin(x) = sin(x(t)) </math><br><br>
 +
When x(t) shifts by a constant t0, <br>
 +
<maht> x2(t) = x(t-t0) </math><br><br>
 +
Then y(t) responds accordingly to the shift. <br>
 +
<math> y2(t) = sin(x2) = sin(x(t-t0)) </math><br>
 +
While maintaining, <math> y2(t) = y(t-t0) </math><br>
 +
 +
== Example of Time-Variant System ==
 +
<br>
 +
<math> y = sin(x) = sin(x(t)) </math><br><br>
 +
When x(t) shifts by a constant t0, <br>
 +
<maht> x2(t) = x(t-t0) </math><br><br>
 +
Then y(t) responds accordingly to the shift. <br>
 +
<math> y2(t) = sin(x2) = sin(x(t-t0)) </math><br>
 +
While maintaining, <math> y2(t) = y(t-t0) </math><br>

Revision as of 14:55, 11 September 2008

Time Invariant. A system is time-invariant as long as the system shows certain fixed behaviors over time. For example, when x(t) shifts by a constant, y(t) should shift by the same constant.

$ y = x(t) $
$ x2 = x(t-t0) $

Then
$ y(t-t0) = x(t-t0) $
Also, the following should satisfy.

$ y = x(t) $
$ x2 = x(2t) $
Then
$ y(2t) = x(2t) $

Example of Time-Invariant System


$ y = sin(x) = sin(x(t)) $

When x(t) shifts by a constant t0,
<maht> x2(t) = x(t-t0) </math>

Then y(t) responds accordingly to the shift.
$ y2(t) = sin(x2) = sin(x(t-t0)) $
While maintaining, $ y2(t) = y(t-t0) $

Example of Time-Variant System


$ y = sin(x) = sin(x(t)) $

When x(t) shifts by a constant t0,
<maht> x2(t) = x(t-t0) </math>

Then y(t) responds accordingly to the shift.
$ y2(t) = sin(x2) = sin(x(t-t0)) $
While maintaining, $ y2(t) = y(t-t0) $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva