(Example of a tume-invariant system)
(Example of a tume-invariant system)
Line 6: Line 6:
 
Output signal y(t) can be <math>10e^t</math> by system<br>
 
Output signal y(t) can be <math>10e^t</math> by system<br>
 
Prove.<br>
 
Prove.<br>
1. <math>e^t -> e^{t-t0}</math> by time delay.<br>
+
1. <math>e^t</math> is changed to <math>e^{t-t0}</math> by time delay.<br>
 
   <math>e^(t-t0) -> 10e^(t-t0)</math> by system.<br>
 
   <math>e^(t-t0) -> 10e^(t-t0)</math> by system.<br>
  

Revision as of 12:59, 9 September 2008

A time-invariant system

For any input signal x(t), a system yelids y(t). Now, suppose input signal shifted t0, x(t-t0). Then output signal also shifted t0, y(t-t0). Then we can say a system is time-invariant.

Example of a tume-invariant system

x(t) = $ e^t $
Output signal y(t) can be $ 10e^t $ by system
Prove.
1. $ e^t $ is changed to $ e^{t-t0} $ by time delay.

  $ e^(t-t0) -> 10e^(t-t0) $ by system.

2. $ e^t -> 10e^t $ by system.

  $ 10e^t -> 10e^{t-t0} $

The output signals are same. Then we can say that the system is time-invariant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett