(Example of a tume-invariant system)
(Example of a tume-invariant system)
Line 3: Line 3:
  
 
== Example of a tume-invariant system ==
 
== Example of a tume-invariant system ==
x(t) = <math>e^t</math>
+
x(t) = <math>e^t</math><br>
Output signal y(t) can be <math>10e^t</math> by system
+
Output signal y(t) can be <math>10e^t</math> by system<br>
Prove.
+
Prove.<br>
1. <math>e^t -> e^{t-t0}</math> by time delay.
+
1. <math>e^t -> e^{t-t0}</math> by time delay.<br>
   <math>e^{t-t0} -> 10e^(t-t0)</math> by system.
+
   <math>e^{t-t0} -> 10e^(t-t0)</math> by system.<br>
  
2. <math>e^t -> 10e^t </math> by system.
+
2. <math>e^t -> 10e^t </math> by system.<br>
   <math>10e^t -> 10e^{t-t0}</math>
+
   <math>10e^t -> 10e^{t-t0}</math><br>
  
The output signals are same. Then we can say that the system is time-invariant.
+
The output signals are same. Then we can say that the system is time-invariant.<br>

Revision as of 12:55, 9 September 2008

A time-invariant system

For any input signal x(t), a system yelids y(t). Now, suppose input signal shifted t0, x(t-t0). Then output signal also shifted t0, y(t-t0). Then we can say a system is time-invariant.

Example of a tume-invariant system

x(t) = $ e^t $
Output signal y(t) can be $ 10e^t $ by system
Prove.
1. $ e^t -> e^{t-t0} $ by time delay.

  $ e^{t-t0} -> 10e^(t-t0) $ by system.

2. $ e^t -> 10e^t $ by system.

  $ 10e^t -> 10e^{t-t0} $

The output signals are same. Then we can say that the system is time-invariant.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang