m (added header)
(added linearity stuff)
Line 1: Line 1:
 
Homework 2 Ben Horst:  [[HW2-A Ben Horst _ECE301Fall2008mboutin| A]]  ::  [[HW2-B Ben Horst _ECE301Fall2008mboutin| B]]  ::  [[HW2-C Ben Horst _ECE301Fall2008mboutin| C]]  ::  [[HW2-D Ben Horst _ECE301Fall2008mboutin| D]]  ::  [[HW2-E Ben Horst _ECE301Fall2008mboutin| E]]
 
Homework 2 Ben Horst:  [[HW2-A Ben Horst _ECE301Fall2008mboutin| A]]  ::  [[HW2-B Ben Horst _ECE301Fall2008mboutin| B]]  ::  [[HW2-C Ben Horst _ECE301Fall2008mboutin| C]]  ::  [[HW2-D Ben Horst _ECE301Fall2008mboutin| D]]  ::  [[HW2-E Ben Horst _ECE301Fall2008mboutin| E]]
 
----
 
----
 +
==Linear Systems==
 +
A linear system is one whose output based on input can also be shown as a sum of each.
 +
Stated another way, in1 + in2 -> out3 where in1 -> out1, in2 -> out2, and out1 + out2 = out3.
  
  
to do...
+
 
 +
==Example of a Linear System==
 +
Given the system y(t) = 3x(t):
 +
 
 +
 
 +
x1(t) = t      ->  y1(t) = 3t
 +
 
 +
x2(t) = 4t    ->  y2(t) = 12t
 +
 
 +
 
 +
x3(t) = t + 4t ->  y3(t) = 3(t + 4t) = 3t + 12t = 15t
 +
 
 +
y1(t) + y2(t) = 15t
 +
 
 +
Since y3 is equal to y1 + y2, the system is linear.
 +
 
 +
==Example of a Non-Linear System==
 +
Given the system y(t) = 12x(t) + 5:
 +
 
 +
x1(t) = t      ->  y1(t) = 12t + 5
 +
 
 +
x2(t) = 4t    ->  y2(t) = 48t + 5
 +
 
 +
 
 +
x3(t) = t + 4t ->  y3(t) = 12(t + 4t) + 5 = 12t + 48t + 5 = 60t + 5
 +
 
 +
y1(t) + y2(t) = 60t + 10
 +
 
 +
 
 +
Since y3 does not equal y1 + y2, the system is non-linear.

Revision as of 05:53, 10 September 2008

Homework 2 Ben Horst: A  :: B  :: C  :: D  :: E


Linear Systems

A linear system is one whose output based on input can also be shown as a sum of each. Stated another way, in1 + in2 -> out3 where in1 -> out1, in2 -> out2, and out1 + out2 = out3.


Example of a Linear System

Given the system y(t) = 3x(t):


x1(t) = t -> y1(t) = 3t

x2(t) = 4t -> y2(t) = 12t


x3(t) = t + 4t -> y3(t) = 3(t + 4t) = 3t + 12t = 15t

y1(t) + y2(t) = 15t

Since y3 is equal to y1 + y2, the system is linear.

Example of a Non-Linear System

Given the system y(t) = 12x(t) + 5:

x1(t) = t -> y1(t) = 12t + 5

x2(t) = 4t -> y2(t) = 48t + 5


x3(t) = t + 4t -> y3(t) = 12(t + 4t) + 5 = 12t + 48t + 5 = 60t + 5

y1(t) + y2(t) = 60t + 10


Since y3 does not equal y1 + y2, the system is non-linear.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett