Line 2: | Line 2: | ||
<math> E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt</math> | <math> E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt</math> | ||
− | + | ex: | |
− | + | <math> E_\infty = {-\infty}^{\infty} [x(t)]^2 dt</math> | |
− | + | ||
Revision as of 09:33, 7 September 2008
Energy
$ E_\infty = \frac{1}{t_2-t_1}\int_{t_1}^{t_2}[x(t)]^2 dt $
ex: $ E_\infty = {-\infty}^{\infty} [x(t)]^2 dt $
Power
$ P_\infty lim N-> - \infty = \frac{1}{2*N+1}\int_{-N}^{N}[x(t)]^2 dt $