Line 1: Line 1:
[[Homework 1_ECE301Fall2008mboutin]] [[HW1.2 Allen Humphreys_ECE301Fall2008mboutin]]
+
[[Homework 1_ECE301Fall2008mboutin]] [[HW1.1 Allen Humphreys_ECE301Fall2008mboutin| 1.1]]  [[HW1.2 Allen Humphreys_ECE301Fall2008mboutin| 1.2]]
  
 
==Properties of Complex Number Algebra==
 
==Properties of Complex Number Algebra==

Revision as of 17:15, 5 September 2008

Homework 1_ECE301Fall2008mboutin 1.1 1.2

Properties of Complex Number Algebra

Complex numbers have certain algebraic properties that are very important when simplifying or solving complex equations.

  • Addition: $ \,(a + bi) + (c + di) = (a + c) + (b + d)i $
  • Subtraction: $ \,(a + bi) - (c + di) = (a - c) + (b - d)i $
  • Multiplication: $ \,(a + bi) (c + di) = ac + bci + adi + bd i^2 = (ac - bd) + (bc + ad)i $
  • Division: $ \,\frac{(a + bi)}{(c + di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\,, $ where c and d are not both zero.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett