(New page: == Review of Complex Numbers == Complex numbers are the numbers that consist of a real part and an imaginary part, and it usually can be illustrated on a co-ordinate system. === Definitio...) |
(→Review of Complex Numbers) |
||
Line 1: | Line 1: | ||
− | + | = Review of Complex Numbers = | |
Complex numbers are the numbers that consist of a real part and an imaginary part, and it usually can be illustrated on a co-ordinate system. | Complex numbers are the numbers that consist of a real part and an imaginary part, and it usually can be illustrated on a co-ordinate system. | ||
Line 12: | Line 12: | ||
:* Division: <math>\,\frac{(a + bi)}{(c + di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\,,</math> | :* Division: <math>\,\frac{(a + bi)}{(c + di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\,,</math> | ||
where ''c'' and ''d'' are not both zero. | where ''c'' and ''d'' are not both zero. | ||
− | |||
==Refrences== | ==Refrences== | ||
*Wikipedia: [[http://en.wikipedia.org/w/index.php?title=Complex_number&action=edit§ion=4]] | *Wikipedia: [[http://en.wikipedia.org/w/index.php?title=Complex_number&action=edit§ion=4]] | ||
*Citizendium: [[http://en.citizendium.org/wiki/Complex_number]] | *Citizendium: [[http://en.citizendium.org/wiki/Complex_number]] |
Latest revision as of 17:11, 5 September 2008
Review of Complex Numbers
Complex numbers are the numbers that consist of a real part and an imaginary part, and it usually can be illustrated on a co-ordinate system.
Definition
Complex numbers are numbers of the form a + bi, where a and b are real numbers and i denotes a number satisfying i$ ^2 $ = − 1. Of course, since the square of any real number is nonnegative, i cannot be a real number. At first glance, it is not even clear whether such an object exists and can be reasonably called a number; for example, can we sensibly associate with i natural operations such as addition and multiplication? As it happens, we can define mathematical operations for these "complex numbers" in a consistent and sensible way and, perhaps more importantly, using complex numbers provides mathematicians, physicists, and engineers with an extremely powerful approach to expressing parts of these sciences in a convenient and natural-feeling way.
Properties
- Addition: $ \,(a + bi) + (c + di) = (a + c) + (b + d)i $
- Subtraction: $ \,(a + bi) - (c + di) = (a - c) + (b - d)i $
- Multiplication: $ \,(a + bi) (c + di) = ac + bci + adi + bd i^2 = (ac - bd) + (bc + ad)i $
- Division: $ \,\frac{(a + bi)}{(c + di)} = \left({ac + bd \over c^2 + d^2}\right) + \left( {bc - ad \over c^2 + d^2} \right)i\,, $
where c and d are not both zero.