Line 20: | Line 20: | ||
− | <math>P=\frac{1}{(3- | + | <math>P=\frac{1}{(3-1)}\int_{1}^{3}\ |x^2|^2\,dx,\,\!</math> |
+ | |||
+ | <math>P=\frac{1}{2}\int_{1}^{3}\ x ^4\, dx , \,\!</math> | ||
+ | |||
+ | <math>E=\frac{1}[2}\frac{1}{5}\!</math> *<math>((3^5)\!</math> - <math>(1^5))\!</math> | ||
+ | |||
+ | |||
+ | <math>E=\frac{1}{10}\!</math>*<math>(243-1)\!</math> | ||
+ | |||
+ | |||
+ | <math>E=24.2\!</math> |
Revision as of 17:19, 5 September 2008
Energy and Power
$ x(t)=x^2\! $
and the limits are from 1 to 3.
Energy calculation
$ E=\int_{1}^{3}\ |x ^2|^2\, dx , \,\! $
$ E=\int_{1}^{3}\ x ^4\, dx , \,\! $ $ E=\frac{1}{5}\! $ *$ ((3^5)\! $ - $ (1^5))\! $ $ E=\frac{1}{5}\! $*$ (243-1)\! $ $ E=48.4\! $
Power calculation
$ P=\frac{1}{(3-1)}\int_{1}^{3}\ |x^2|^2\,dx,\,\! $ $ P=\frac{1}{2}\int_{1}^{3}\ x ^4\, dx , \,\! $
$ E=\frac{1}[2}\frac{1}{5}\! $ *$ ((3^5)\! $ - $ (1^5))\! $
$ E=\frac{1}{10}\! $*$ (243-1)\! $
$ E=24.2\! $