Line 5: Line 5:
 
  E= <math>\int_{1}^{3}\ x ^4\, dx , \,\!</math>
 
  E= <math>\int_{1}^{3}\ x ^4\, dx , \,\!</math>
 
  E= <math>\frac{1}{5}\!</math> {<math>(3^5)\!</math> - <math>(1^5)\!</math>}
 
  E= <math>\frac{1}{5}\!</math> {<math>(3^5)\!</math> - <math>(1^5)\!</math>}
  E= <math>\frac{1}{5}\!</math>(243-1)
+
  E= <math>\frac{1}{5}\!</math>* 242
 +
E= 48.4

Revision as of 16:47, 5 September 2008

Energy and Power

Energy calculation

E= $ \int_{1}^{3}\ |x ^2|^2\, dx , \,\! $
E= $ \int_{1}^{3}\ x ^4\, dx , \,\! $
E= $ \frac{1}{5}\! $ {$ (3^5)\! $ - $ (1^5)\! $}
E= $ \frac{1}{5}\! $* 242
E= 48.4

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett