Line 11: Line 11:
 
<math>E = \int_{-\infty}^{\infty} \! e^{j (\pi t)}\ dt</math>
 
<math>E = \int_{-\infty}^{\infty} \! e^{j (\pi t)}\ dt</math>
  
<math>E = \int_{-\infty}^{\infty} \! sqrt{cos^2(\pit) + sin^2(\pit) \ dt</math>
+
<math>E = \int_{-\infty}^{\infty} \! \sqrt{cos^2(\pit) + sin^2(\pit)} \ dt</math>
  
 
== Signal Power ==
 
== Signal Power ==

Revision as of 05:06, 5 September 2008

Signal Energy

Signal Energy expended from $ t_1\! $ to $ t_2\! $ for CT functions is given by the formula $ E = \int_{t_1}^{t_2} \! |x(t)|^2\ dt $

The total signal energy for a signal can be found by the formula $ E = \int_{-\infty}^{\infty} \! |x(t)|^2\ dt $

For DT signals, the total energy is given by the formula $ E_{\infty} = \sum^{\infty}_{n=-\infty} |x[n]|^2 \! $

Example: $ x(t) = e^{j (\pi t)}\! $

$ E = \int_{-\infty}^{\infty} \! e^{j (\pi t)}\ dt $

$ E = \int_{-\infty}^{\infty} \! \sqrt{cos^2(\pit) + sin^2(\pit)} \ dt $

Signal Power

For CT functions, the power of a signal from $ t_1\! $ to $ t_2\! $ is given by the function $ P_{avg}=\frac{1}{t_2-t_1} \int_{t_1}^{t_2} |x(t)|^2\ dt \! $

The total signal power is given by the function $ P_{\infty}=\lim_{t->\infty} \frac{1}{2t} \int_{-t}^{t} |x(t)|^2\ dt \! $

Total signal power for DT signals is given by the formula $ P_{\infty} = \lim_{N->\infty} \frac{1}{2N+1} \sum^{N}_{n=-N} |x[n]|^2\! $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn