(One intermediate revision by the same user not shown)
Line 11: Line 11:
  
 
<math>
 
<math>
 +
F = \left[\begin{array}{1}
 +
M \\
 +
N \\
 +
P
 +
\end{array}\right] \\
 
\Delta F =  
 
\Delta F =  
\left[\begin{array} {1}
+
\nabla
 +
\left(\left[\begin{array}{1}
 +
\frac{\partial}{\partial x} \\
 +
\frac{\partial}{\partial y} \\
 +
\frac{\partial}{\partial z}
 +
\end{array}\right]
 +
\cdot \left[\begin{array}{1}
 +
M \\
 +
N \\
 +
P
 +
\end{array}\right] \right)
 +
-\nabla \times
 +
\left(\left[\begin{array}{1}
 +
\frac{\partial}{\partial x} \\
 +
\frac{\partial}{\partial y} \\
 +
\frac{\partial}{\partial z}
 +
\end{array}\right]
 +
\times \left[\begin{array}{1}
 +
M \\
 +
N \\
 +
P
 +
\end{array}\right] \right) \\
 +
 
 +
\Delta F =
 +
\nabla (M_x + N_y + P_z) -
 +
\left[\begin{array}{1}
 +
\frac{\partial}{\partial x} \\
 +
\frac{\partial}{\partial y} \\
 +
\frac{\partial}{\partial z}
 +
\end{array}\right]
 +
\times
 +
\left[\begin{array}{1}
 +
P_y - N_z \\
 +
M_z - P_x \\
 +
N_x - M_y
 +
\end{array}\right] \\
 +
 
 +
\Delta F = \left[\begin{array}{1}
 +
M_{xx} + N_{xy} + P_{xz} \\
 +
M_{xy} + N_{yy} + P_{yz} \\
 +
M_{xz} + N_{yz} + P_{zz}
 +
\end{array}\right]
 +
- \left[\begin{array}{1}
 +
N_{xy} + P_{xz} - M_{yy} - M_{zz} \\
 +
M_{xy} + P_{yz} - N_{xx} - N_{zz} \\
 +
M_{xz} + N_{yz} - P_{xx} - P_{yy}
 +
\end{array}\right] \\
 +
 
 +
\Delta F = \left[\begin{array}{1}
 +
M_{xx} + M_{yy} + M_{zz} \\
 +
N_{xx} + N_{yy} + N_{zz} \\
 +
P_{xx} + P_{yy} + P_{zz}
 +
\end{array}\right] \\
 +
 
 +
\Delta F = \left[\begin{array}{1}
 +
\Delta M \\
 +
\Delta N \\
 +
\Delta P
 +
\end{array}\right] \\
 +
</math>
 +
 
 +
The formulas, let alone the derivations, for the vector Laplacian in other coordinate systems are a bit too complex for the level of this article. However, if you wanted to see the formulas, they can be found [https://mathworld.wolfram.com/VectorLaplacian.html here].
  
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]

Latest revision as of 23:34, 6 December 2020

Vector Laplacian

The Laplace operator is originally an operation where you input a scalar function and it returns a scalar function. However, there is an alternate version of the Laplace operator that can be performed on vector fields.

The vector Laplacian is defined as:

$ \Delta F = \nabla^2 F = \nabla (\nabla \cdot F) - \nabla \times (\nabla \times F) \\ $

where F is a vector field. In Cartesian coordinates, the vector Laplacian simplifies to the following:

$ F = \left[\begin{array}{1} M \\ N \\ P \end{array}\right] \\ \Delta F = \nabla \left(\left[\begin{array}{1} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right] \cdot \left[\begin{array}{1} M \\ N \\ P \end{array}\right] \right) -\nabla \times \left(\left[\begin{array}{1} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right] \times \left[\begin{array}{1} M \\ N \\ P \end{array}\right] \right) \\ \Delta F = \nabla (M_x + N_y + P_z) - \left[\begin{array}{1} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{array}\right] \times \left[\begin{array}{1} P_y - N_z \\ M_z - P_x \\ N_x - M_y \end{array}\right] \\ \Delta F = \left[\begin{array}{1} M_{xx} + N_{xy} + P_{xz} \\ M_{xy} + N_{yy} + P_{yz} \\ M_{xz} + N_{yz} + P_{zz} \end{array}\right] - \left[\begin{array}{1} N_{xy} + P_{xz} - M_{yy} - M_{zz} \\ M_{xy} + P_{yz} - N_{xx} - N_{zz} \\ M_{xz} + N_{yz} - P_{xx} - P_{yy} \end{array}\right] \\ \Delta F = \left[\begin{array}{1} M_{xx} + M_{yy} + M_{zz} \\ N_{xx} + N_{yy} + N_{zz} \\ P_{xx} + P_{yy} + P_{zz} \end{array}\right] \\ \Delta F = \left[\begin{array}{1} \Delta M \\ \Delta N \\ \Delta P \end{array}\right] \\ $

The formulas, let alone the derivations, for the vector Laplacian in other coordinate systems are a bit too complex for the level of this article. However, if you wanted to see the formulas, they can be found here.

Back to main page

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva