(Power and Energy Problem)
Line 15: Line 15:
 
   
 
   
 
<math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt)</math>
 
<math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt)</math>
 +
 +
 +
<math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T 1\,dt)</math>
 +
  
  
 
<math>E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt</math>
 
<math>E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt</math>
 +
 +
 +
<math>E_\infty = \int_{-\infty}^\infty 1,dt</math>

Revision as of 20:27, 4 September 2008

Power and Energy Problem

$ x(t) = 3\cos(4t + \frac{\pi}{3}) $

$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |3\cos(4t + \frac{\pi}{3})|^2\,dt) $


$ E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt $


  • Bonus Problem!

$ x(t) = e^{j(\pi t-1)} $

$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt) $


$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt) $


$ E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt $


$ E_\infty = \int_{-\infty}^\infty 1,dt $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal