(→Power and Energy Problem) |
|||
Line 15: | Line 15: | ||
<math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt)</math> | <math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt)</math> | ||
+ | |||
+ | |||
+ | <math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt)</math> | ||
+ | |||
<math>E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt</math> | <math>E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt</math> | ||
+ | |||
+ | |||
+ | <math>E_\infty = \int_{-\infty}^\infty 1,dt</math> |
Revision as of 20:27, 4 September 2008
Power and Energy Problem
$ x(t) = 3\cos(4t + \frac{\pi}{3}) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |3\cos(4t + \frac{\pi}{3})|^2\,dt) $
$ E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt $
- Bonus Problem!
$ x(t) = e^{j(\pi t-1)} $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt) $
$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T 1\,dt) $
$ E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt $
$ E_\infty = \int_{-\infty}^\infty 1,dt $