Line 6: Line 6:
  
  
<math>E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt</math>
+
<math>E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt</math>
  
  
Line 17: Line 17:
  
  
<math>E_\infty</math>
+
<math>E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt</math>

Revision as of 20:21, 4 September 2008

Power and Energy Problem

$ x(t) = 3\cos(4t + \frac{\pi}{3}) $

$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |3\cos(4t + \frac{\pi}{3})|^2\,dt) $


$ E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt $


  • Bonus Problem!

$ x(t) = e^{j(\pi t-1)} $

$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt) $


$ E_\infty = \int_{-\infty}^\infty |e^{j(\pi t-1)}|^2\,dt $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach