Line 14: Line 14:
 
<math>x(t) = e^{j(\pi t-1)}</math>
 
<math>x(t) = e^{j(\pi t-1)}</math>
 
   
 
   
<math>P_\infty</math>
+
<math>P_\infty = \lim_{T \to \infty} (\frac{1}{2T}  \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt)</math>
  
  
 
<math>E_\infty</math>
 
<math>E_\infty</math>

Revision as of 20:20, 4 September 2008

Power and Energy Problem

$ x(t) = 3\cos(4t + \frac{\pi}{3}) $

$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |3\cos(4t + \frac{\pi}{3})|^2\,dt) $


$ E_\infty = \int_{-\infty}^\infty |3\cos(4t + \frac{\pi}{3})|^2\,dt $


  • Bonus Problem!

$ x(t) = e^{j(\pi t-1)} $

$ P_\infty = \lim_{T \to \infty} (\frac{1}{2T} \int_{-T}^T |e^{j(\pi t-1)}|^2\,dt) $


$ E_\infty $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison