(Created page with "=='''Normed Vector Space:'''== To get closer to the subject of Banach spaces, we now turn the concept of norms into a usable dimensional space. This product of this transform...")
 
Line 1: Line 1:
 
=='''Normed Vector Space:'''==
 
=='''Normed Vector Space:'''==
  
To get closer to the subject of Banach spaces, we now turn the concept of norms into a usable dimensional space. This product of this transformation is called a normed vector space. A normed vector space is a space represented by the pair (V, ||.||).
+
To get closer to the subject of Banach spaces, we now turn the concept of norms into a usable dimensional space. This product of this transformation is called a normed vector space. A normed vector space is a space represented by the pair (V, ||.||). This space is a type of metric space, which itself is a subset of topological spaces, as seen in the image below.
 +
 
 +
[[File:Spaces|thumbnail|center|Image by Jhausauer]]

Revision as of 22:18, 6 December 2020

Normed Vector Space:

To get closer to the subject of Banach spaces, we now turn the concept of norms into a usable dimensional space. This product of this transformation is called a normed vector space. A normed vector space is a space represented by the pair (V, ||.||). This space is a type of metric space, which itself is a subset of topological spaces, as seen in the image below.

File:Spaces
Image by Jhausauer

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics