Line 13: Line 13:
 
A concurrent definition for a harmonic function is the idea that the value at a point in a function is always equal to the average of the values along a circle surrounding that point. This leads to an interesting conclusion about the Laplace Operator itself, in that when <math> \Delta f = 0 </math>, the above statement is true.
 
A concurrent definition for a harmonic function is the idea that the value at a point in a function is always equal to the average of the values along a circle surrounding that point. This leads to an interesting conclusion about the Laplace Operator itself, in that when <math> \Delta f = 0 </math>, the above statement is true.
  
<center><small>
+
<center>
  
 
[[File:800px-Laplace's_equation_on_an_annulus.svg.png|center|Example of Harmonic Function]]
 
[[File:800px-Laplace's_equation_on_an_annulus.svg.png|center|Example of Harmonic Function]]
  
</small></center>
+
</center>
  
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]
 
[[Walther_MA271_Fall2020_topic9|Back to main page]]

Revision as of 18:04, 6 December 2020


Applications: Harmonic Functions

Definition

Harmonic functions are functions that satisfy the equation

$ \frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2} f}{\partial x_{n}^{2}}=0 $, or $ \large\Delta f = \nabla^{2} f = 0 $.

A concurrent definition for a harmonic function is the idea that the value at a point in a function is always equal to the average of the values along a circle surrounding that point. This leads to an interesting conclusion about the Laplace Operator itself, in that when $ \Delta f = 0 $, the above statement is true.

Example of Harmonic Function

Back to main page

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin