Line 3: | Line 3: | ||
The energy can be computed using the formula: | The energy can be computed using the formula: | ||
− | <math>E = \int_{b}^{a}{|x(t)|^2}dt\,</math> | + | :<math>E = \int_{b}^{a}{|x(t)|^2}dt\,</math> |
− | Suppose we want to compute the energy of the signal <math>cos(t)</math> in the interval 0 to 2 | + | Suppose we want to compute the energy of the signal <math>cos(t)</math> in the interval <math>0</math> to <math>2\pi</math>. |
+ | |||
+ | The formula then becomes: | ||
+ | |||
+ | |||
+ | :<math>E = \int_{0}^{2\pi}{|cos(t)|^2}dt\,</math> | ||
+ | |||
+ | |||
+ | Using trigonometric identity, <math>cos^2(t) = \frac{1}{2} + \frac{1}{2}cos(2t)\,</math> | ||
+ | |||
+ | This implies: | ||
+ | |||
+ | |||
+ | :<math>E = \frac{1}{2}\int_{0}^{2\pi}1 + cos(2t)dt\,</math> | ||
+ | |||
+ | |||
+ | Integrating yields | ||
+ | |||
+ | |||
+ | :<math>E = \frac{1}{2}\left(t + \frac{1}{2}sin(2t)\right)\,</math> |
Revision as of 18:52, 4 September 2008
Suppose a signal is defined by $ cos(t) $
The energy can be computed using the formula:
- $ E = \int_{b}^{a}{|x(t)|^2}dt\, $
Suppose we want to compute the energy of the signal $ cos(t) $ in the interval $ 0 $ to $ 2\pi $.
The formula then becomes:
- $ E = \int_{0}^{2\pi}{|cos(t)|^2}dt\, $
Using trigonometric identity, $ cos^2(t) = \frac{1}{2} + \frac{1}{2}cos(2t)\, $
This implies:
- $ E = \frac{1}{2}\int_{0}^{2\pi}1 + cos(2t)dt\, $
Integrating yields
- $ E = \frac{1}{2}\left(t + \frac{1}{2}sin(2t)\right)\, $