Line 31: | Line 31: | ||
<math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n * \Delta d)\lambda_n^c</math> | <math>G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n * \Delta d)\lambda_n^c</math> | ||
</center> | </center> | ||
+ | |||
+ | # |
Revision as of 19:06, 9 July 2019
Communication, Networking, Signal and Image Processing (CS)
Question 5: Image Processing
August 2016 (Published in Jul 2019)
Problem 1
- Calcualte an expression for $ \lambda_n^c $, the X-ray energy corrected for the dark current
$ \lambda_n^c=\lambda_n^b-\lambda_n^d $
- Calculate an expression for $ G_n $, the X-ray attenuation due to the object's presence
$ G_n = \frac{d\lambda_n^c}{dx}=-\mu (x,y_0+n * \Delta d)\lambda_n^c $