Line 56: Line 56:
 
By Fourier Series we know that
 
By Fourier Series we know that
 
<math>
 
<math>
  x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} =  \sum_{k=-\infty}^\infty a_k e^{jk 6 \pi  t} \text{(**)}
+
  x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} =  \sum_{k=-\infty}^\infty a_k e^{jk 3 \pi  t} \text{(**)}
 
</math>
 
</math>
  
Line 65: Line 65:
  
 
----
 
----
 
+
<math>
 
\text{3) } x(t) = cos(\frac{2\pi}{10}t), \omega_{o} = \frac{\pi}{10} \\
 
\text{3) } x(t) = cos(\frac{2\pi}{10}t), \omega_{o} = \frac{\pi}{10} \\
& = \frac{e^{j\frac{2\pi}{10} t} + e^{-j\frac{2\pi}{10} t} }{2} \\
+
</math>
& = \frac{1}{2}e^{j\frac{2\pi}{10} t} + \frac{1}{2}e^{-j\frac{2\pi}{10} t} \\
+
 
& \text{By Fourier Series we know that} \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} \\
+
<math>
& \text{Here, } \omega_o = \frac{ \pi}{10} \text{ ,therefore, } \\
+
\begin{align}
& = \frac{1}{2}e^{j\omega_o(2) t} + \frac{1}{2}e^{-j\omega_o(-2) t} \\
+
x(t) & = \frac{e^{j\frac{2\pi}{10} t} + e^{-j\frac{2\pi}{10} t} }{2} \\
& \text{So we can say that } a_2 = a_{-2} = \frac{1}{2},  a_k = 0 \text{ for all other k}\\
+
& = \frac{1}{2}e^{j\frac{2\pi}{10} t} + \frac{1}{2}e^{-j\frac{2\pi}{10} t} \text{(*)}
 +
\end{align}
 +
</math>
 +
 
 +
By Fourier Series we know that
 +
<math>
 +
x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} \sum_{k=-\infty}^\infty a_k e^{jk 6 \pi  t} \text{(**)}
 +
</math>
 +
 
 +
By comparing (*) with (**), we can see that  
 +
<math>
 +
a_2 = a_{-2} = \frac{1}{2},  a_k = 0 \text{ for all other k}\\
 +
</math>
 +
 
 
\text{4) } x(t) =
 
\text{4) } x(t) =
 
  \begin{cases}
 
  \begin{cases}

Revision as of 00:01, 29 April 2019


Fourier Series Coefficients

A project by Kalyan Mada



Introduction

I am going to compute some fourier series coefficients.


CT signals

$ \text{1) } x(t) = sin(6 \pi t), \text{ the frequency of this signal is } \omega_{o} = 6\pi. $

$ \begin{align} x(t)& = \frac{e^{j6\pi t} - e^{-j6\pi t} }{2j} \\ & = \frac{1}{2j} e^{j6\pi t} - \frac{1}{2j} e^{-j6\pi t} \text{(*)} \end{align} $


By Fourier Series we know that $ x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} = \sum_{k=-\infty}^\infty a_k e^{jk 6 \pi t} \text{(**)} $

By comparing (*) with (**), we can see that $ a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j}, \text{and } a_k = 0 \text{ for all other k's}. $



$ \text{2) } x(t) = 2 + cos(6 \pi t) - \frac{1}{2} sin(3 \pi t), \omega_{o} = 3\pi \\ $

$ \begin{align} x(t) & = 2 + \frac{1}{2}(e^{j6\pi t} + e^{-j6\pi t}) + \frac{1}{4j} (e^{j3\pi t} -e^{-j3\pi t}) \\ & = 2e^{j\pi t} + \frac{1}{2}e^{j 6\pi t} + \frac{1}{2}e^{-j 6\pi t} + \frac{1}{4j}e^{j 3\pi t} - \frac{1}{4j}e^{j 3\pi t} \text{(*)}\\\ \end{align} $


By Fourier Series we know that $ x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} = \sum_{k=-\infty}^\infty a_k e^{jk 3 \pi t} \text{(**)} $

By comparing (*) with (**), we can see that $ a_0 = 2, a_1 = \frac{1}{4j}, a_{-1} = -\frac{1}{4j}, a_2 = a_{-2} = \frac{1}{2}, a_k = 0 \text{ for all other k} \\ $


$ \text{3) } x(t) = cos(\frac{2\pi}{10}t), \omega_{o} = \frac{\pi}{10} \\ $

$ \begin{align} x(t) & = \frac{e^{j\frac{2\pi}{10} t} + e^{-j\frac{2\pi}{10} t} }{2} \\ & = \frac{1}{2}e^{j\frac{2\pi}{10} t} + \frac{1}{2}e^{-j\frac{2\pi}{10} t} \text{(*)} \end{align} $

By Fourier Series we know that $ x(t) = \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} = \sum_{k=-\infty}^\infty a_k e^{jk 6 \pi t} \text{(**)} $

By comparing (*) with (**), we can see that $ a_2 = a_{-2} = \frac{1}{2}, a_k = 0 \text{ for all other k}\\ $

\text{4) } x(t) =

\begin{cases}
  3, & \text{if}\ a=1 \\
  0, & \text{otherwise}
\end{cases}

\end{align} </math>


DT signals

$ \begin{align} \text{1) } x[n] = sin(12 \pi n) & = \frac{e^{j6\pi t} - e^{-j6\pi t} }{2j} \\ & = \frac{1}{2j} e^{j6\pi t} - \frac{1}{2j} e^{-j6\pi t} \\ & \text{By Fourier Series we know that} \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} \\ & \text{Here, } \omega_o = 6 \pi \text{ ,therefore, } \\ & = \frac{1}{2j} e^{j\omega_o(1) t} - \frac{1}{2j} e^{j\omega_o(-1) t} \\ & \text{So we can say that } a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j}, a_k = 0 \text{ for all other k} \\ \text{2) } x[n] = 1 + sin(\frac{2\pi}{8}n) + 3cos(\frac{2\pi}{8}n), N=8 --> \omega_{o} = \frac{2\pi}{8} \\ & = \frac{e^{j6\pi t} - e^{-j6\pi t} }{2j} \\ & = \frac{1}{2j} e^{j6\pi t} - \frac{1}{2j} e^{-j6\pi t} \\ & \text{By Fourier Series we know that} \sum_{k=-\infty}^\infty a_k e^{jk\omega_o t} \\ & \text{Here, } \omega_o = 6 \pi \text{ ,therefore, } \\ & = \frac{1}{2j} e^{j\omega_o(1) t} - \frac{1}{2j} e^{j\omega_o(-1) t} \\ & \text{So we can say that } a_1 = \frac{1}{2j}, a_{-1} = -\frac{1}{2j}, a_k = 0 \text{ for all other k} \\ \text{3) } x[n] = -j^n, \omega_o = \frac{\pi}{2} \\ \text{4) } x[n] = \begin{cases} sin(\pi t), & \text{if}\ a=1 \\ 0, & \text{otherwise} \end{cases}\\ \end{align} $



Questions and comments

If you have any questions, comments, etc. please post them here.


[to 2019 Spring ECE 301 Boutin]


Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett