(One intermediate revision by the same user not shown)
Line 32: Line 32:
  
 
d)<br>
 
d)<br>
<math>H(e^{j\mu},e^{jv})=\dfrac{3}{2}-\dfrac{1}{18}\sum_{m=-1}^{1} e^{-j\mu}\sum_{n=-1}^{1} e^(-jv) =\dfrac{3}{2}-\dfrac{1}{18}(1+2cos\mu)(1+2cosv)</math><br>
+
<math>H(e^{j\mu},e^{jv})=\dfrac{3}{2}-\dfrac{1}{18}\sum_{m=-1}^{1} e^{-j\mu}\sum_{n=-1}^{1} e^{-jv} =\dfrac{3}{2}-\dfrac{1}{18}(1+2cos\mu)(1+2cosv)</math><br>
 
<br>
 
<br>
  
 
e)<br>
 
e)<br>
 
This is a sharpen filter. The image will become more sharpen as <math>\lambda</math> increases.
 
This is a sharpen filter. The image will become more sharpen as <math>\lambda</math> increases.
 +
 
----
 
----
 +
===Similar Problem===
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2014/CS-5.pdf?dl=1 2014 QE CS5 Prob2]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_12/CS-5%20QE%2012.pdf?dl=1 2012 QE CS5 Prob2]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_11/CS-5%20QE%2011.pdf?dl=1 2011 QE CS5 Prob1]<br>
 +
 +
 +
----
 +
 
[[QE_2017_CS-5|Back to QE CS question 5, August 2017]]
 
[[QE_2017_CS-5|Back to QE CS question 5, August 2017]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 10:58, 25 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 5: Image Processing

August 2017 Problem 1


Solution

a)
$ ay(m,n)=ax(m,n)+a\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l)) $ linear

b)
$ y(m,n)=x(m,n)+\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l))=1.5x(m,n)-\dfrac{1}{18}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l) $
$ h(m,n)=1.5\delta(m,n)-\dfrac{1}{18}(\delta(m+1)+\delta(m)+\delta(m-1))(\delta(n-1)+\delta(n)+\delta(n+1))) $
Wan82_CS5-1.PNG

c)
Not a separable system.

d)
$ H(e^{j\mu},e^{jv})=\dfrac{3}{2}-\dfrac{1}{18}\sum_{m=-1}^{1} e^{-j\mu}\sum_{n=-1}^{1} e^{-jv} =\dfrac{3}{2}-\dfrac{1}{18}(1+2cos\mu)(1+2cosv) $

e)
This is a sharpen filter. The image will become more sharpen as $ \lambda $ increases.


Similar Problem

2014 QE CS5 Prob2
2012 QE CS5 Prob2
2011 QE CS5 Prob1



Back to QE CS question 5, August 2017

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn