(4 intermediate revisions by the same user not shown)
Line 24: Line 24:
 
<math>l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3)</math><br>
 
<math>l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3)</math><br>
 
The KKT condition takes the form<br>
 
The KKT condition takes the form<br>
<math>\begin{cases}
+
<math>\nabla_xl(x,\mu)=\begin{bmatrix}2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix}</math><br>
{\nabla_xl(x,\mu)=begin{bmatrix}
+
<math>\mu_1(x_1+x_2-2)=0</math><br>
2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}
+
<math>\mu_2(x_1+2x_2-3)=0</math><br>
=
+
<math>\mu_1>=0</math>, <math>\mu_2>=0</math><br>
\begin{bmatrix}
+
0 \\ 0
+
\end{bmatrix}} \\
+
\mu_1(x_1+x_2-2)=0 \\
+
\mu_2(x_1+2x_2-3)=0 \\
+
\mu_1>=0, \mu_2>=0
+
\end{cases}
+
</math><br>
+
 
<math> \Rightarrow
 
<math> \Rightarrow
 
\begin{cases}
 
\begin{cases}
Line 44: Line 36:
 
\end{cases}</math><br>
 
\end{cases}</math><br>
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>
 +
----
 +
----
 +
===Similar Problem===
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/AC-3?dl=1 2015 QE AC3 Prob5]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_13/AC-3.pdf?dl=1 2013 QE AC3 Prob1]<br>
 
----
 
----
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 10:48, 25 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ x_1+x_2-2<=0 $ and $ x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \nabla_xl(x,\mu)=\begin{bmatrix}2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} $
$ \mu_1(x_1+x_2-2)=0 $
$ \mu_2(x_1+2x_2-3)=0 $
$ \mu_1>=0 $, $ \mu_2>=0 $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.



Similar Problem

2015 QE AC3 Prob5
2013 QE AC3 Prob1


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison