(3 intermediate revisions by the same user not shown)
Line 18: Line 18:
 
----
 
----
 
===Solution===
 
===Solution===
Let <math>t_1=x_1-2</math>, <math>t_2=x_2+1</math><br>
+
Let <math>t_1=x_1-2 </math>, <math>t_2=x_2+1</math><br>
 
so that <math>g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2=0</math> would have some convex property<br>  
 
so that <math>g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2=0</math> would have some convex property<br>  
 
with <math>f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1</math><br>
 
with <math>f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1</math><br>
<math>D^2g(x)=\dfrac{1}{(t_1^2+t_2^2+3)^3}\begin{bmatrix} 6(t_1)^2-2(t_2)^3-6 & 8t_1t_2 \\ 8t_1t_2 & 6(t_2)^2-2(t_1)^3-6 \end{bmatrix}=\dfrac{1}{27}\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}</math>
+
<math>D^2g(x)=\dfrac{1}{(t_1^2+t_2^2+3)^3}\begin{bmatrix} 6(t_1)^2-2(t_2)^3-6 & 8t_1t_2 \\ 8t_1t_2 & 6(t_2)^2-2(t_1)^3-6 \end{bmatrix}=\dfrac{1}{27}\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}</math><br>
----bamr
+
It is easy to see that <math>\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix}</math> is n.d .<br>
 +
Such that function at <math>[2 -1]^T</math> is strictly locally concave.<br>
 +
 
 +
----
 +
===Similar Problem===
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/AC-3?dl=1 2015 QE AC3 Prob1]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/AC-3?dl=1 2015 QE AC3 Prob3]<br>
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2014/AC-3.pdf?dl=1 2014 QE AC3 Prob2]<br>
 +
----
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 10:42, 25 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 3


Solution

Let $ t_1=x_1-2 $, $ t_2=x_2+1 $
so that $ g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2=0 $ would have some convex property
with $ f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1 $
$ D^2g(x)=\dfrac{1}{(t_1^2+t_2^2+3)^3}\begin{bmatrix} 6(t_1)^2-2(t_2)^3-6 & 8t_1t_2 \\ 8t_1t_2 & 6(t_2)^2-2(t_1)^3-6 \end{bmatrix}=\dfrac{1}{27}\begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $
It is easy to see that $ \begin{bmatrix} -6 & 0 \\ 0 & -6 \end{bmatrix} $ is n.d .
Such that function at $ [2 -1]^T $ is strictly locally concave.


Similar Problem

2015 QE AC3 Prob1
2015 QE AC3 Prob3
2014 QE AC3 Prob2


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett