(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[Category:ECE]] | [[Category:ECE]] | ||
[[Category:QE]] | [[Category:QE]] | ||
− | |||
[[Category:problem solving]] | [[Category:problem solving]] | ||
Line 21: | Line 20: | ||
The problem equal to:<br> | The problem equal to:<br> | ||
Minimize <math>2x_1+x_2</math><br> | Minimize <math>2x_1+x_2</math><br> | ||
− | Subject to \begin{align*} | + | Subject to <math>\begin{align*} |
− | + | &x_1+3x_2-x_3=6\\ | |
− | + | &2x_1+x_2-x_4=4\\ | |
− | \end{align*} | + | &x_1+x_2+x_5=3\\ |
− | + | &x_1, x_2, x_3, x_4,x_5 >=0 | |
− | + | \end{align*}</math><br> | |
− | + | such that <math>A= | |
− | + | \begin{bmatrix} | |
− | <math> | + | 1 & 3 & -1 & 0 & 0 \\ |
− | + | 2 & 1 & 0 & -1 & 0 \\ | |
− | + | 1 & 1 & 0 & 0 & 1 | |
− | </math> | + | \end{bmatrix} |
− | + | </math><br> | |
− | + | we take <math>B= | |
− | + | \begin{bmatrix} | |
− | + | 1 & 3 & 0 \\ | |
− | + | 2 & 1 & 0 \\ | |
− | + | 1 & 1 & 1 | |
− | + | \end{bmatrix} \Rightarrow | |
− | + | B\begin{bmatrix} | |
− | + | x_1 \\ | |
− | + | x_2 \\ | |
− | + | x_3 | |
− | + | \end{bmatrix} | |
− | + | =b \Rightarrow \begin{bmatrix} | |
− | + | x_1 \\ | |
− | + | x_2 \\ | |
− | + | x_3 | |
− | + | \end{bmatrix} | |
− | + | = | |
− | + | \begin{bmatrix} | |
− | + | 1 & 3 & 0 \\ | |
− | + | 2 & 1 & 0 \\ | |
− | + | 1 & 1 & 1 | |
− | + | \end{bmatrix}^{-1} | |
− | + | \begin{bmatrix} | |
− | + | 6\\ | |
− | + | 4\\ | |
− | + | 3 | |
− | + | \end{bmatrix} | |
− | + | = | |
− | + | \begin{bmatrix} | |
− | + | \dfrac{6}{5} \\ | |
− | + | \dfrac{8}{5} \\ | |
− | + | \dfrac{1}{5} | |
− | + | \end{bmatrix} | |
− | + | </math><br> | |
− | + | Such that <math>x^T=[\dfrac{6}{5}, \dfrac{8}{5},\dfrac{1}{5}, 0, 0]</math> is a feasible solution. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | \ | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | \ | + | |
− | </math> | + | |
− | + | ||
− | + | ||
− | + | ||
− | < | + | |
− | + | ||
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </math> | + | |
− | + | ||
− | + | ||
+ | ---- | ||
===Similar Problem=== | ===Similar Problem=== | ||
− | + | [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/AC-3?dl=1 2015 QE AC3 Prob1]<br> | |
− | + | [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/AC-3?dl=1 2015 QE AC3 Prob3]<br> | |
+ | [https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2014/AC-3.pdf?dl=1 2014 QE AC3 Prob2]<br> | ||
---- | ---- | ||
− | [[ | + | [[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]] |
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Latest revision as of 10:37, 25 February 2019
Automatic Control (AC)
Question 3: Optimization
August 2016 Problem 1
Solution
The problem equal to:
Minimize $ 2x_1+x_2 $
Subject to $ \begin{align*} &x_1+3x_2-x_3=6\\ &2x_1+x_2-x_4=4\\ &x_1+x_2+x_5=3\\ &x_1, x_2, x_3, x_4,x_5 >=0 \end{align*} $
such that $ A= \begin{bmatrix} 1 & 3 & -1 & 0 & 0 \\ 2 & 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} $
we take $ B= \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow B\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =b \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6\\ 4\\ 3 \end{bmatrix} = \begin{bmatrix} \dfrac{6}{5} \\ \dfrac{8}{5} \\ \dfrac{1}{5} \end{bmatrix} $
Such that $ x^T=[\dfrac{6}{5}, \dfrac{8}{5},\dfrac{1}{5}, 0, 0] $ is a feasible solution.
Similar Problem
2015 QE AC3 Prob1
2015 QE AC3 Prob3
2014 QE AC3 Prob2