Line 72: Line 72:
 
===Similar Problem===
 
===Similar Problem===
 
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/AC-3?dl=1 2015 QE AC3 Prob3]
 
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_2015/AC-3?dl=1 2015 QE AC3 Prob3]
 
+
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_11/AC-3%20QE%2011.pdf?dl=1 2011 QE AC3 Prob2]
 +
[https://engineering.purdue.edu/ECE/Academics/Graduates/Archived_QE_August_10/AC-3%20QE%2010.pdf?dl=1 2010 QE AC3 Prob1]
 
----
 
----
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
 
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 10:33, 25 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 1


Solution

The problem equal to:
Minimize $ 2x_1+x_2 $
Subject to $ \begin{align*} &x_1+3x_2-x_3=6\\ &2x_1+x_2-x_4=4\\ &x_1+x_2+x_5=3\\ &x_1, x_2, x_3, x_4,x_5 >=0 \end{align*} $
such that $ A= \begin{bmatrix} 1 & 3 & -1 & 0 & 0 \\ 2 & 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix} $
we take $ B= \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow B\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =b \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 6\\ 4\\ 3 \end{bmatrix} = \begin{bmatrix} \dfrac{6}{5} \\ \dfrac{8}{5} \\ \dfrac{1}{5} \end{bmatrix} $
Such that $ x^T=[\dfrac{6}{5}, \dfrac{8}{5},\dfrac{1}{5}, 0, 0] $ is a feasible solution.


Similar Problem

2015 QE AC3 Prob3 2011 QE AC3 Prob2 2010 QE AC3 Prob1


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010