(2 intermediate revisions by the same user not shown)
Line 24: Line 24:
 
<math>y(m,n)=x(m,n)+\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l))</math>.<br>
 
<math>y(m,n)=x(m,n)+\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l))</math>.<br>
 
a) Is this a linear system? Is this a space invariant system?<br>
 
a) Is this a linear system? Is this a space invariant system?<br>
b) Calculate and sketch thw psf, <math>h[n]</math>, for <math>\lambda=0.5</math>.<br>
+
b) Calculate and sketch the psf, <math>h[n]</math>, for <math>\lambda=0.5</math>.<br>
 
c) Is this a separable system?<br>
 
c) Is this a separable system?<br>
d) Calculate the frequency response, <math>H(e^{j\mu},e^{jv})</math>. (Express your esult in simplified from.)<br>
+
d) Calculate the frequency response, <math>H(e^{j\mu},e^{jv})</math>. (Express your result in simplified from.)<br>
 
e) Describe what ths filter does and how the output changes as <math>\lambda</math> increases.<br>  
 
e) Describe what ths filter does and how the output changes as <math>\lambda</math> increases.<br>  
  
  
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.1|answers and discussions]]'''
+
:'''Click [[2017CS-5-1|here]] to view student [[2017CS-5-1|answers and discussions]]'''
 
----
 
----
 
----
 
----
Line 40: Line 40:
 
d) Sketch the function <math>Y(e^{j\omega})</math> on the interval <math>[-2\pi,2\pi]</math> when <math>T=a/2</math>.<br>
 
d) Sketch the function <math>Y(e^{j\omega})</math> on the interval <math>[-2\pi,2\pi]</math> when <math>T=a/2</math>.<br>
 
e) Sketch the function <math>Y(e^{j\omega})</math> on the interval <math>[-2\pi,2\pi]</math> when <math>T=a</math>.<br>
 
e) Sketch the function <math>Y(e^{j\omega})</math> on the interval <math>[-2\pi,2\pi]</math> when <math>T=a</math>.<br>
:'''Click [[ECE_PhD_QE_CNSIP_2015_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2015_Problem1.1|answers and discussions]]'''
+
:'''Click [[2017CS-5-2|here]] to view student [[2017CS-5-2|answers and discussions]]'''
 
----
 
----
 
----
 
----
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]

Latest revision as of 15:48, 19 February 2019


ECE Ph.D. Qualifying Exam

Communicates & Signal Process (CS)

Question 5: Image Processing

August 2017




Problem 1. [50 pts]
Consider the following 2D system with input $ x(m,n) $ and output $ y(m,n) $ for $ \lambda>0 $.
$ y(m,n)=x(m,n)+\lambda(x(m,n)-\dfrac{1}{9}\sum_{k=-1}^{1} \sum_{l=-1}^{1} x(m-k,n-l)) $.
a) Is this a linear system? Is this a space invariant system?
b) Calculate and sketch the psf, $ h[n] $, for $ \lambda=0.5 $.
c) Is this a separable system?
d) Calculate the frequency response, $ H(e^{j\mu},e^{jv}) $. (Express your result in simplified from.)
e) Describe what ths filter does and how the output changes as $ \lambda $ increases.


Click here to view student answers and discussions


Problem 2. [50 pts]
Let $ x(t)=sinc^2(t/a) $ for some $ a>0 $, and let $ y(n)=x(nT) $ where $ f_s=1/T $ is the sampling frequency of the system.
a) Calculate and sketch $ X(f) $, the CTFT of $ x(t) $.
b) Calculate $ Y(e^{j\omega}) $, the DTFT of $ x(t) $.
c) What is the minimum sampling frequency, $ f_s $, that ensures perfect reconstruction of the signal?
d) Sketch the function $ Y(e^{j\omega}) $ on the interval $ [-2\pi,2\pi] $ when $ T=a/2 $.
e) Sketch the function $ Y(e^{j\omega}) $ on the interval $ [-2\pi,2\pi] $ when $ T=a $.

Click here to view student answers and discussions


Back to ECE QE page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett