Line 41: Line 41:
  
 
e)<br>
 
e)<br>
<math>Y_1(\omega)=-H_1(\omega_0)(\dfrac{1}{2}H_1(\omega)X(\omega)+\dfrac{1}{2}H_1{\omega-\pi}X_1{\omega-\pi})</math><br>
+
<math>Y_1(\omega)=-H_1(\omega_0)(\dfrac{1}{2}H_1(\omega)X(\omega)+\dfrac{1}{2}H_1(\omega-\pi)X_1(\omega-\pi))</math><br>
 
https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS2-5.PNG<br>
 
https://www.projectrhea.org/rhea/dropbox_/381ea5db244c12bb92e6de3206725a7a/Wan82_CS2-5.PNG<br>
 
<br>
 
<br>

Revision as of 15:43, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 2: Signal Processing

August 2011 Problem 1


Solution

a)
$ 8\dfrac{sin(\dfrac{3\pi}{8}n)sin(\dfrac{\pi}{8}n)}{\pi n} $
Wan82_CS2-1.PNG
$ \Rightarrow x[n]=16\dfrac{sin(\dfrac{3\pi}{8}n)}{\pi n}\dfrac{sin(\dfrac{\pi}{8}n)}{\pi n}cos(\dfrac{\pi n}{2}) $
Wan82_CS2-2.PNG

b)
$ X_0(\omega)=\dfrac{1}{2}H_0(\dfrac{\omega}{2})X(\dfrac{\omega}{2})+\dfrac{1}{2}H_0(\dfrac{\omega-2\pi}{2})X(\dfrac{\omega-2\pi}{2}) $
Wan82_CS2-3.PNG

c)
$ X_1(\omega)=\dfrac{1}{2}H_0(\dfrac{\omega}{2})X(\dfrac{\omega}{2})+\dfrac{1}{2}H_0(\dfrac{\omega-2\pi}{2})X(\dfrac{\omega-2\pi}{2}) $
Wan82_CS2-3.PNG

d)
$ Y_0(\omega)=H_0(\omega)(\dfrac{1}{2}H_0(\omega)X(\omega)+\dfrac{1}{2}H_0(\omega-\pi)X(\omega-\pi)) $
Wan82_CS2-4.PNG

e)
$ Y_1(\omega)=-H_1(\omega_0)(\dfrac{1}{2}H_1(\omega)X(\omega)+\dfrac{1}{2}H_1(\omega-\pi)X_1(\omega-\pi)) $
Wan82_CS2-5.PNG

f)
$ Y(\omega)=\dfrac{1}{2}(H_0^2(\omega)-H_0^2(\pi-\omega))X(\omega) $
Wan82_CS2-6.PNG


Back to QE CS question 2, August 2011

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett