(2 intermediate revisions by the same user not shown)
Line 25: Line 25:
 
=e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!}</math><br>
 
=e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!}</math><br>
 
b)<br>
 
b)<br>
when <math>x>n</math> <math>P_X(x)=0</math><br>
+
when <math>x>n</math><br> <math>P_X(x)=0</math><br>
when <math>0<=x<=n</math><br>  
+
when <math>0\le x\le n</math><br>  
 
<math>P_{X|Z}(x|n) = P_{X,Y}(X=x,Y=n-x|Z=n)=\dfrac{e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{n-x}}{(n-x)!}}{e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^n}{n!}}</math><br>
 
<math>P_{X|Z}(x|n) = P_{X,Y}(X=x,Y=n-x|Z=n)=\dfrac{e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{n-x}}{(n-x)!}}{e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^n}{n!}}</math><br>
<math>=\dfrac{n!}{x!(n-x)!} </math><math> \dfrac{\lambda^x\mu^{n-x}}{(\lambda+\mu)^n}=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x(\dfrac{\mu}{\lambda+\mu})^{(n-x)}</math>
+
<math>=\dfrac{n!}{x!(n-x)!} </math><math> \dfrac{\lambda^x\mu^{n-x}}{(\lambda+\mu)^n}=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x(\dfrac{\mu}{\lambda+\mu})^{(n-x)}</math><br>
 +
<math>=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x(1-\dfrac{\lambda}{\lambda+\mu})^{(n-x)}</math><br>
 +
Such that <math>x</math> on condition <math>z=n</math> is binomial distributed <math>n=n</math> <math>p=\dfrac{\lambda}{\lambda+\mu}</math><br>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 15:33, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 3


Solution

a)
Because $ X, Y $ are independent jointly distribute Poisson random variable.
$ P_{X+Y}(x,y)=P_X(x)\dot P_Y(y) $
Such that $ P_Z(z)=\sum_{x=0}^{z} e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!} =\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)} =e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!} $
b)
when $ x>n $
$ P_X(x)=0 $
when $ 0\le x\le n $
$ P_{X|Z}(x|n) = P_{X,Y}(X=x,Y=n-x|Z=n)=\dfrac{e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{n-x}}{(n-x)!}}{e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^n}{n!}} $
$ =\dfrac{n!}{x!(n-x)!} $$ \dfrac{\lambda^x\mu^{n-x}}{(\lambda+\mu)^n}=\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x(\dfrac{\mu}{\lambda+\mu})^{(n-x)} $
$ =\begin{pmatrix}n\\x\end{pmatrix}(\dfrac{\lambda}{\lambda+\mu})^x(1-\dfrac{\lambda}{\lambda+\mu})^{(n-x)} $
Such that $ x $ on condition $ z=n $ is binomial distributed $ n=n $ $ p=\dfrac{\lambda}{\lambda+\mu} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett