Line 32: Line 32:
 
\begin{cases}
 
\begin{cases}
 
0 & \omega<0 \\
 
0 & \omega<0 \\
\dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0<=\omega<h \\
+
\dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0\le\omega<h \\
0 & \omega>=h
+
0 & \omega\ge h
 
\end{cases}
 
\end{cases}
 
</math><br>
 
</math><br>

Revision as of 15:31, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 1


Solution

a)
$ F_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{1}{2}hb-\dfrac{1}{2}hb(\dfrac{h-\omega}{h})^2=\dfrac{2\omega}{h}-\dfrac{w^2}{h^2} & 0\le\omega<h \\ 1 & \omega\ge h \end{cases} $

b)
$ f_x(\omega)=\dfrac{\partial F_x(\omega)}{\partial\omega} $
$ f_x(\omega)= \begin{cases} 0 & \omega<0 \\ \dfrac{-2}{h^2}\omega+\dfrac{2}{h} & 0\le\omega<h \\ 0 & \omega\ge h \end{cases} $

c)
$ X(\omega)\bar=\int_{-\infty}^{\infty} \omega f_x(\omega) dx =\int_{0}^{h} -\dfrac{2}{h^2}(\omega)^2 +\dfrac{2}{h}\omega d\omega =\dfrac{1}{3}h $

d)
$ P(x>\dfrac{h}{3})=\int_{\dfrac{h}{3}}^{+\infty} \omega f_x(\omega)dx = \int_{\dfrac{h}{3}}^{h} -\dfrac{2}{h^2}\omega+\dfrac{2}{h}d\omega =\dfrac{4}{9} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch