Line 31: Line 31:
 
<math>x[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+(-1)^n)=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})</math><br>
 
<math>x[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+(-1)^n)=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})</math><br>
 
<math>\Rightarrow r_{xx}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l</math>
 
<math>\Rightarrow r_{xx}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l</math>
 +
<br>
 +
 +
d)<br>
 +
<math>Y[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}cos(\dfrac{\pi}{2}n) \Rightarrow r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l)</math><br>
 
----
 
----
 
[[QE2011_CS-2_ECE538|Back to QE CS question 2, August 2011]]
 
[[QE2011_CS-2_ECE538|Back to QE CS question 2, August 2011]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 11:26, 19 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 2: Signal Processing

August 2011 Problem 2


Solution

a)
Because $ x[-n]=x[n] $ $ y[-n]=y[n] $
$ r_{xy}[l]=X[l]\ast Y^{\ast}[-l]=X[-l]\ast Y^{\ast}[l]=Y[l]\ast X^{\ast}[-l]=r_{yx}[l] $

b)
$ z[n]=x[n]+jy[n] $
$ r_{zz}[l]=(x[l]+jy[l])*(x[-l]+jy[-l])^*=x[l]*x^*[-l]+jy[l]*x^*[-l]-jx[l]*y^*[-l]+y[l]*y^*[-l]=r_{xx}[l]+r_{yy}[l] $

c)
$ x[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+(-1)^n)=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n}) $
$ \Rightarrow r_{xx}[l]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}(1+e^{j\pi n})=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}2cos^2\dfrac{\pi}{2}l $

d)
$ Y[n]=\dfrac{sin(\dfrac{\pi}{4}n)}{\pi n}cos(\dfrac{\pi}{2}n) \Rightarrow r_{yy}[l]=\dfrac{sin(\dfrac{\pi}{4})}{\pi l}cos(\dfrac{\pi}{2}l) $


Back to QE CS question 2, August 2011

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett