Line 24: Line 24:
 
=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)}
 
=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)}
 
=e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!}</math><br>
 
=e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!}</math><br>
 +
b)<br>
 +
when <math>x>n</math> <math>P_X(x)=0</math><br>
 +
when <math>0<=x<=n</math> <math>P_{X|Z}(x|n)&=P_{X,Y}(X=x,Y=n-x|Z=n) \\&=\dfrac{1}{1}</math>
 
----
 
----
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
 
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]]
  
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
 
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]

Revision as of 22:36, 18 February 2019


ECE Ph.D. Qualifying Exam

Communication Signal (CS)

Question 1: Random Variable

August 2016 Problem 3


Solution

a)
Because $ X, Y $ are independent jointly distribute Poisson random variable.
$ P_{X+Y}(x,y)=P_X(x)\dot P_Y(y) $
Such that $ P_Z(z)=\sum_{x=0}^{z} e^{-\lambda}\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!} =\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)} =e^{-(\lambda+\mu)}\dfrac{(\lambda+\mu)^z}{z!} $
b)
when $ x>n $ $ P_X(x)=0 $
when $ 0<=x<=n $ $ P_{X|Z}(x|n)&=P_{X,Y}(X=x,Y=n-x|Z=n) \\&=\dfrac{1}{1} $


Back to QE CS question 1, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal