(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Comm...") |
|||
Line 21: | Line 21: | ||
Because <math>X, Y</math> are independent jointly distribute Poisson random variable.<br> | Because <math>X, Y</math> are independent jointly distribute Poisson random variable.<br> | ||
<math>P_{X+Y}(x,y)=P_X(x)\dot P_Y(y)</math><br> | <math>P_{X+Y}(x,y)=P_X(x)\dot P_Y(y)</math><br> | ||
− | Such that <math>P_Z(z)=\sum_{x=0}^{z} e^(-\lambda)\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^(z-x)}{(z-x)!}=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^(z-x)</math> | + | Such that <math>P_Z(z)=\sum_{x=0}^{z} e^(-\lambda)\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!}=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)}</math> |
---- | ---- | ||
[[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]] | [[ECE-QE_CS1-2016|Back to QE CS question 1, August 2016]] | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Revision as of 22:29, 18 February 2019
Communication Signal (CS)
Question 1: Random Variable
August 2016 Problem 3
Solution
a)
Because $ X, Y $ are independent jointly distribute Poisson random variable.
$ P_{X+Y}(x,y)=P_X(x)\dot P_Y(y) $
Such that $ P_Z(z)=\sum_{x=0}^{z} e^(-\lambda)\dfrac{\lambda^x}{x!}e^{-\mu}\dfrac{\mu^{(z-x)}}{(z-x)!}=\dfrac{e^{-(\lambda+\mu)}}{z!}\sum_{x=0}^{z} \begin{pmatrix} z \\ x \end{pmatrix} \lambda^x\mu^{(z-x)} $