Line 24: Line 24:
 
<math>l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3)</math><br>
 
<math>l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3)</math><br>
 
The KKT condition takes the form<br>
 
The KKT condition takes the form<br>
<math>
+
<math>\nabla_xl(x,\mu)=begin{bmatrix}2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix}</math><br>
\nabla_xl(x,\mu)=
+
{begin{bmatrix}
+
2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2
+
\end{bmatrix}
+
=
+
\begin{bmatrix}
+
0 \\ 0
+
\end{bmatrix}}</math><br>
+
 
<math>\mu_1(x_1+x_2-2)=0</math><br>
 
<math>\mu_1(x_1+x_2-2)=0</math><br>
 
<math>\mu_2(x_1+2x_2-3)=0</math><br>
 
<math>\mu_2(x_1+2x_2-3)=0</math><br>

Revision as of 21:47, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ x_1+x_2-2<=0 $ and $ x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \nabla_xl(x,\mu)=begin{bmatrix}2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} $
$ \mu_1(x_1+x_2-2)=0 $
$ \mu_2(x_1+2x_2-3)=0 $
$ \mu_1>=0 $, $ \mu_2>=0 $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang