(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Auto...")
 
Line 33: Line 33:
 
<math> \Rightarrow
 
<math> \Rightarrow
 
\begin{cases}
 
\begin{cases}
\begin{matrix}
+
 
\mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & does not fit condition \\
+
\mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\
\mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & does not fit condition \\
+
\mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\
 
\mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\
 
\mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\
\mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & does not fit condition
+
\mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong
\end{matrix}
+
 
 
\end{cases}</math><br>
 
\end{cases}</math><br>
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>
 
In all <math>x^T=[3 -1]</math> is the maximizer of original function.<br>

Revision as of 21:38, 18 February 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016 Problem 5


Solution

The problem equal to
Minimize $ (x_1)^2+(x_2)^2-14x_1-6x_2-7 $
Subject to $ &x_1+x_2-2<=0 \\ & x_1+2x_2-3<=0 $
Form the lagrangian function
$ l(x,\mu)=(x_1)^2+(x_2)^2-14x_1-6x_2-7+\mu_1(x_1+x_2-2)+\mu_2(x_1+2x_2-3) $
The KKT condition takes the form
$ \begin{cases} \nabla_xl(x,\mu)=begin{bmatrix} 2x_1-14+\mu_1+\mu_2 \\ 2x_2-6+\mu_1+2\mu_2\end{bmatrix}=\begin{bmatrix}0 \\ 0\end{bmatrix} \mu_1(x_1+x_2-2)=0 \\ \mu_2(x_1+2x_2-3)=0 \\ \mu_1>=0, \mu_2>=0 \end{cases} $
$ \Rightarrow \begin{cases} \mu_1=0 & \mu_2=0 & x_1=7 & x_2=3 & wrong \\ \mu_1=0 & \mu_2=4 & x_1=5 & x_2=-1 & wrong \\ \mu_1=8 & \mu_2=4 & x_1=3 & x_2=-1 & f(x)=-33 \\ \mu_1=20 & \mu_2=-8 & x_1=1 & x_2=1 & wrong \end{cases} $
In all $ x^T=[3 -1] $ is the maximizer of original function.


Back to QE AC question 3, August 2016

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin