(Created page with "Category:ECE Category:QE Category:problem solving <center> <font size= 4> ECE Ph.D. Qualifying Exam </font size> <font size= 4> Auto...") |
|||
Line 18: | Line 18: | ||
---- | ---- | ||
===Solution=== | ===Solution=== | ||
− | Let <math>t_1=x_1- | + | Let <math>t_1=x_1-2</math>, <math>t_2=x_2+1</math><br> |
− | so that <math>g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}</math> | + | so that <math>g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2</math> would have some convex property with <math>f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1</math><br> |
---- | ---- | ||
[[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]] | [[QE2016_AC-3_ECE580|Back to QE AC question 3, August 2016]] | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Revision as of 20:59, 18 February 2019
Automatic Control (AC)
Question 3: Optimization
August 2016 Problem 3
Solution
Let $ t_1=x_1-2 $, $ t_2=x_2+1 $
so that $ g(t_1,t_2)=\dfrac{1}{t_1^2+t_2^2+3}|t_1=0,t_2 $ would have some convex property with $ f(x_1,x_2)=\dfrac{1}{(x_1-2)^2+(x_2+1)^2+3}|x_1=2,x_1=-1 $