(QE2013_AC-3_ECE580_question1) |
(ChanglinWan_AC3_2016_problem) |
||
Line 17: | Line 17: | ||
</font size> | </font size> | ||
− | August | + | August 2017 |
</center> | </center> | ||
---- | ---- | ||
---- | ---- | ||
− | :Student answers and discussions for [[QE2013_AC-3_ECE580-1|Part 1]],[[QE2013_AC-3_ECE580-2|2]],[[QE2013_AC-3_ECE580-3|3]],[[QE2013_AC-3_ECE580-4|4]],[[QE2013_AC-3_ECE580-5|5]] | + | <!--哈哈我是注释,:Student answers and discussions for [[QE2013_AC-3_ECE580-1|Part 1]],[[QE2013_AC-3_ECE580-2|2]],[[QE2013_AC-3_ECE580-3|3]],[[QE2013_AC-3_ECE580-4|4]],[[QE2013_AC-3_ECE580-5|5]]不会在浏览器中显示。--> |
+ | |||
---- | ---- | ||
− | + | 1.(20 pts) Considern the following linear program, <br/> | |
− | <br> | + | <center> minimize <math>2x_{1} + x_{2}</math>, </center> <br/> |
− | <math> | + | <center> subject to <math>x_{1} + 3x_{2} \geq 6 </math> </center> <br/> |
− | < | + | <center> <math>2x_{1} + x_{2} \geq 4</math> </center> <br/> |
− | + | <center> <math> x_{1} + x_{2} \leq 3 </math> </center> <br/> | |
− | <br> | + | <center> <math> x_{1} \geq 0 </math>, <math> x_{2} \geq 0 </math>. </center> <br/> |
− | <math> | + | Convert the above linear program into standard form and find an initial basic feasible solution for the program in standard form. <br/> |
− | < | + | |
− | + | ||
− | < | + | |
− | + | ||
− | |||
---- | ---- | ||
+ | 2.(20 pts) | ||
+ | *(15 pts) FInd the largest range of the step-size, <math> \alpha </math>, for which the fixed step gradient descent algorithm is guaranteed to convege to the minimizer of the quadratic function <br/> | ||
+ | <center> <math> f = \frac{1}{2} x^{T}Qx - b^{T}x </math> </center> <br/> | ||
+ | starting from an arbitary initial condition <math> x^{(0)} \in \mathbb{R}^{n} </math>, where <math> x \in \mathbb{R}^{n} </math>, and <math>Q = Q^{T} > 0</math>. <br/> | ||
+ | *(5 pts) Find the largest range of the step size, <math>\alpha</math>, for which the fixed step gradient descent algorithm is guaranteed to converge to the minimizer of the quadratic function<br/> | ||
+ | <center><math> f= 6x_{1}^{2}+2x_{2}^{2}-5 </math></center> <br/> | ||
+ | starting from an arbitrary initial condition <math>x^{(0)} \in \mathbb{R}^{n}</math> | ||
---- | ---- | ||
− | [ | + | 3. (20 pts) Is the function <br/> |
+ | <center><math> f(x_{1}, x_{2})=\frac{1}{(x_{1}-2)^{2} + (x_{2}+1)^{2}+3} </math></center><br> | ||
+ | locally convex, concave, or neither in the neighborhood of the point <math> [2 -1]^{T} </math>? Justify your answer by giving all the details of your argument. | ||
− | [[ | + | |
+ | ---- | ||
+ | 4. (20 pts) Solve the following optimization problem: | ||
+ | <center>optimize <math> x_{1}x_{2} </math> </center><br> | ||
+ | <center>subject to <math> x_{1}+x_{2}+x_{3}=1 </math> </center><br> | ||
+ | <center><math> x_{1}+x_{2}-x_{3}=0 </math></center><br> | ||
+ | |||
+ | ---- | ||
+ | 5. (20 pts) Solve the following optimization problem:<br/> | ||
+ | <center>maximize <math> 14x_{1}-x_{1}^{2}+6x_{2}-x_{2}^{2}+7 </math></center><br> | ||
+ | <center>subject to <math>x_{1}+x_{2} \leq 2</math></center><br> | ||
+ | <center><math> x_{1}+2x_{2} \leq 3 </math></center> | ||
+ | |||
+ | ---- | ||
+ | ---- | ||
+ | |||
+ | |||
+ | [[ECE_PhD_Qualifying_Exams|Back to ECE QE page]] |
Revision as of 21:03, 17 February 2019
Automatic Control (AC)
Question 3: Optimization
August 2017
1.(20 pts) Considern the following linear program,
Convert the above linear program into standard form and find an initial basic feasible solution for the program in standard form.
2.(20 pts)
- (15 pts) FInd the largest range of the step-size, $ \alpha $, for which the fixed step gradient descent algorithm is guaranteed to convege to the minimizer of the quadratic function
starting from an arbitary initial condition $ x^{(0)} \in \mathbb{R}^{n} $, where $ x \in \mathbb{R}^{n} $, and $ Q = Q^{T} > 0 $.
- (5 pts) Find the largest range of the step size, $ \alpha $, for which the fixed step gradient descent algorithm is guaranteed to converge to the minimizer of the quadratic function
starting from an arbitrary initial condition $ x^{(0)} \in \mathbb{R}^{n} $
3. (20 pts) Is the function
locally convex, concave, or neither in the neighborhood of the point $ [2 -1]^{T} $? Justify your answer by giving all the details of your argument.
4. (20 pts) Solve the following optimization problem:
5. (20 pts) Solve the following optimization problem: