(QE2013_AC-3_ECE580_question1)
Line 1: Line 1:
[[Category:ECE PhD Qualifying Exams]][[Category:ECE PhD Qualifying Exams]][[Category:ECE PhD Qualifying Exams]]
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
  
=QE2016_AC-3_ECE580=
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
  
 +
<font size= 4>
 +
Automatic Control (AC)
  
 +
Question 3: Optimization
 +
</font size>
  
Put your content here . . .
+
August 2016
 +
</center>
 +
----
 +
----
 +
:Student answers and discussions for [[QE2013_AC-3_ECE580-1|Part 1]],[[QE2013_AC-3_ECE580-2|2]],[[QE2013_AC-3_ECE580-3|3]],[[QE2013_AC-3_ECE580-4|4]],[[QE2013_AC-3_ECE580-5|5]]
 +
----
 +
'''1.(20 pts) In some of the optimization methods, when minimizing a given function f(x), we select an intial guess <math>x^{(0)}</math> and a real symmetric positive definite matrix <math>H_{0}</math>. Then we computed <math>d^{(k)} = -H_{k}g^{(k)}</math>, where <math>g^{(k)} = \nabla f( x^{(k)} )</math>, and <math>x^{(k+1)} = x^{(k)} + \alpha_{k}d^{(k)}</math>, where'''
 +
<br>
 +
<math> \alpha_{k} = arg\min_{\alpha \ge 0}f(x^{(k)} + \alpha d^{(k)}) .</math>
 +
<br>
 +
'''Suppose that the function we wish to minimize is a standard quadratic of the form,'''
 +
<br>
 +
<math> f(x) = \frac{1}{2} x^{T} Qx - x^{T}b+c, Q = Q^{T} > 0. </math>
 +
<br><br>
 +
'''(i)(10 pts) Find a closed form expression for <math>\alpha_k</math> in terms of <math>Q, H_k, g^{(k)}</math>, and  <math>d^{(k)}; </math>'''
 +
<br>
 +
'''(ii)(10 pts) Give a sufficient condition on <math>H_k</math> for <math>\alpha_k</math> to be positive.'''
  
 +
:'''Click [[QE2013_AC-3_ECE580-1|here]] to view [[QE2013_AC-3_ECE580-1|student answers and discussions]]'''
 +
----
  
  
 +
----
 +
[[ECE_PhD_Qualifying_Exams|Back to ECE QE page]]
  
 
[[ ECE PhD Qualifying Exams|Back to ECE PhD Qualifying Exams]]
 
[[ ECE PhD Qualifying Exams|Back to ECE PhD Qualifying Exams]]

Revision as of 22:33, 27 January 2019


ECE Ph.D. Qualifying Exam

Automatic Control (AC)

Question 3: Optimization

August 2016



Student answers and discussions for Part 1,2,3,4,5

1.(20 pts) In some of the optimization methods, when minimizing a given function f(x), we select an intial guess $ x^{(0)} $ and a real symmetric positive definite matrix $ H_{0} $. Then we computed $ d^{(k)} = -H_{k}g^{(k)} $, where $ g^{(k)} = \nabla f( x^{(k)} ) $, and $ x^{(k+1)} = x^{(k)} + \alpha_{k}d^{(k)} $, where
$ \alpha_{k} = arg\min_{\alpha \ge 0}f(x^{(k)} + \alpha d^{(k)}) . $
Suppose that the function we wish to minimize is a standard quadratic of the form,
$ f(x) = \frac{1}{2} x^{T} Qx - x^{T}b+c, Q = Q^{T} > 0. $

(i)(10 pts) Find a closed form expression for $ \alpha_k $ in terms of $ Q, H_k, g^{(k)} $, and $ d^{(k)}; $
(ii)(10 pts) Give a sufficient condition on $ H_k $ for $ \alpha_k $ to be positive.

Click here to view student answers and discussions



Back to ECE QE page

Back to ECE PhD Qualifying Exams

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang