Line 1: Line 1:
 
===Euler's Equation And De Moivre's Formula===
 
===Euler's Equation And De Moivre's Formula===
 +
 +
If <math>z = z + iy<math>, then <math>e^{z}<math> is defined to be the complex number
  
 
<math>
 
<math>
 
   \begin{align} e^{z}
 
   \begin{align} e^{z}
&= e^{x}(\cosy + i\siny)
+
&= e^{x}(\cos(y) + i\sin(y))
 
   \end{align}
 
   \end{align}
 
</math>
 
</math>

Revision as of 22:24, 2 December 2018

Euler's Equation And De Moivre's Formula

If $ z = z + iy<math>, then <math>e^{z}<math> is defined to be the complex number <math> \begin{align} e^{z} &= e^{x}(\cos(y) + i\sin(y)) \end{align} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett