Line 2: | Line 2: | ||
</center> | </center> | ||
---- | ---- | ||
− | |||
− | |||
Compute the energy <math class="inline">E_\infty</math> and the power <math class="inline">P_\infty</math> of the following DT signal: | Compute the energy <math class="inline">E_\infty</math> and the power <math class="inline">P_\infty</math> of the following DT signal: | ||
− | + | <math>x[n]= e^{-j3\pi n} </math> | |
Norm of a signal: | Norm of a signal: | ||
Line 22: | Line 20: | ||
&=\infty. \\ | &=\infty. \\ | ||
\end{align}</math> | \end{align}</math> | ||
+ | |||
<math>E_{\infty} = \infty</math>. | <math>E_{\infty} = \infty</math>. | ||
Line 33: | Line 32: | ||
&= 1 \\ | &= 1 \\ | ||
\end{align}</math> | \end{align}</math> | ||
+ | |||
<math>P_{\infty} = 1 </math> | <math>P_{\infty} = 1 </math> | ||
+ | |||
+ | Conclusion: | ||
+ | |||
+ | Therefore, <math>E_{\infty} = \infty</math>, <math>P_{\infty} = 1 </math> |
Revision as of 13:26, 1 December 2018
Topic: Energy and Power Computation of a Signal </center>
Compute the energy $ E_\infty $ and the power $ P_\infty $ of the following DT signal:
$ x[n]= e^{-j3\pi n} $
Norm of a signal: $ \begin{align} |je^{3\pi jn}| = {{je^{3\pi jn}}\times{-je^{-3\pi jn}}} &= {{-j^2}\times{e^{3\pi jn - 3\pi jn}}} &= 1 \end{align} $
$ \begin{align} E_{\infty}&=\lim_{N\rightarrow \infty}\sum_{n=-N}^N |je^{3\pi jn}| \\ &= \lim_{N\rightarrow \infty}\sum_{n=-N}^N 1 \\ &=\infty. \\ \end{align} $
$ E_{\infty} = \infty $.
$ \begin{align} P_{\infty}&=\lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N |je^{3\pi jn}|^2 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=-N}^N 1 \\ &= \lim_{N\rightarrow \infty}{1 \over {2N+1}}\sum_{n=0}^{2N} 1 \\ &= \lim_{N\rightarrow \infty}{2N+1 \over {2N+1}} \\ &= \lim_{N\rightarrow \infty}{1}\\ &= 1 \\ \end{align} $
$ P_{\infty} = 1 $
Conclusion:
Therefore, $ E_{\infty} = \infty $, $ P_{\infty} = 1 $