(5 intermediate revisions by 2 users not shown) | |||
Line 25: | Line 25: | ||
Since <math>u(t - \tau) = 1</math><br /> | Since <math>u(t - \tau) = 1</math><br /> | ||
− | <math>\tau | + | <math>\tau \leq t</math><br /> |
<math>y(t)=\begin{cases} | <math>y(t)=\begin{cases} | ||
− | \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t | + | \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ |
0, & \mbox else | 0, & \mbox else | ||
\end{cases}</math><br /> | \end{cases}</math><br /> | ||
<math>y(t)=\begin{cases} | <math>y(t)=\begin{cases} | ||
− | \frac{e^{-2t}-1}{-2} , & \mbox{if }t | + | \frac{e^{-2t}-1}{-2} , & \mbox{if }t \geq 0 \\ |
0, & \mbox else | 0, & \mbox else | ||
\end{cases}</math><br /> | \end{cases}</math><br /> | ||
− | <math>y(t)=\frac{u(t)}{2}(1-e^{-2t})<br /> | + | <math>y(t)=\frac{u(t)}{2}(1-e^{-2t})</math><br /> |
Line 57: | Line 57: | ||
Since <math>u(-t + \tau) = 1</math><br /> | Since <math>u(-t + \tau) = 1</math><br /> | ||
− | <math>\tau | + | |
+ | <math>\tau \geq t</math><br /> | ||
<math>y(t)=\begin{cases} | <math>y(t)=\begin{cases} | ||
− | \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t | + | \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t \leq 0 \\ |
0, & \mbox else | 0, & \mbox else | ||
\end{cases}</math><br /> | \end{cases}</math><br /> | ||
− | <math>y(t)=u(-t)\frac{e^{3\tau}}{3} \ | + | <math>y(t)=\left. u(-t)\frac{e^{3\tau}}{3}\right |_t^0 </math><br /> |
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br /> | <math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br /> | ||
Line 77: | Line 78: | ||
<math>h(t) = e^{-2t} u(t)</math><br /> | <math>h(t) = e^{-2t} u(t)</math><br /> | ||
− | |||
− | <math>y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math | + | <math> |
+ | \begin{align} | ||
+ | y(t) &= h(t)*x(t)\\ | ||
+ | &= \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau\\ | ||
+ | & = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) dt\\ | ||
+ | &= \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau | ||
+ | \end{align} | ||
+ | </math> | ||
− | <math> | + | Since <math>u(-t + \tau) = 1</math><br /> |
− | <math>y(t) = | + | <math>\tau \geq t</math><br /> |
+ | |||
+ | <math>y(t)=\begin{cases} | ||
+ | \int_{t}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ | ||
+ | \int_{0}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t < 0 | ||
+ | \end{cases}</math><br /> | ||
− | |||
− | |||
<math>y(t)=\begin{cases} | <math>y(t)=\begin{cases} | ||
− | \ | + | \frac{e^{-2t}}{2}, & \mbox{if }t \geq 0 \\ |
− | + | \frac{1}{2}, & \mbox{if }t < 0 | |
\end{cases}</math><br /> | \end{cases}</math><br /> | ||
− | + | =DT Examples= | |
− | + | Example 1: n is positive for both h[n] and x[n] | |
+ | <math>h[n] = u[n]</math><br /> | ||
− | = | + | <math>x[n] = 4^{-n}u[n]</math><br /> |
+ | <math>y[n] = x[n]*h[n]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k]</math><br /> | ||
+ | |||
+ | <math>u[k]=\begin{cases} | ||
+ | 1, & \mbox{if }k \geq 0 \\ | ||
+ | 0, & \mbox{if }k < 0 | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k]</math><br /> | ||
+ | |||
+ | <math>u[n-k]=\begin{cases} | ||
+ | 1, & \mbox{if }k \leq n \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | <math>y[n]=\begin{cases} | ||
+ | \sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\ | ||
+ | 0, & \mbox{if }n < 0 | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | <math>y[n]=\begin{cases} | ||
+ | \frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | <math>y[n]=\begin{cases} | ||
+ | \frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | <math>y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n]</math><br /> | ||
+ | |||
+ | |||
+ | Example 2: n is negative for both h[n] and x[n] | ||
+ | |||
+ | <math>h[n] = u[-n]</math><br /> | ||
+ | |||
+ | <math>x[n] = 3^{n}u[-n]</math><br /> | ||
+ | |||
+ | <math>y[n] = h[n]*x[n]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=-\infty}^{\infty}3^{k}u[-k]u[-n + k]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=-\infty}^{0}3^{k}u[-n + k]</math><br /> | ||
+ | |||
+ | since <math>u[-n + k] = 1</math><br /> | ||
+ | |||
+ | <math>k \geq n</math><br /> | ||
+ | |||
+ | <math>u[k]=\begin{cases} | ||
+ | \sum_{k=n}^{0}3^{k}, & \mbox{if }n \leq 0 \\ | ||
+ | 0, & \mbox{if }n > 0 | ||
+ | \end{cases}</math><br /> | ||
+ | |||
+ | Substitute <math>m = -k</math><br /> | ||
+ | |||
+ | <math>y[n] = u[-n]\sum_{m=-n}^{0}3^{-m}</math><br /> | ||
+ | |||
+ | <math>y[n] = u[-n]\sum_{m=0}^{-n}(\frac{1}{3})^{m}</math><br /> | ||
+ | |||
+ | <math>y[n] = u[-n]\frac{1 - (\frac{1}{3})^{-n + 1}}{1-\frac{1}{3}}</math><br /> | ||
+ | |||
+ | <math>y[n] = u[-n]\frac{3 - 3^{-n}}{2}</math><br /> | ||
+ | |||
+ | |||
+ | |||
+ | Example 3: n is negative for x[n] and positive for h[n] | ||
+ | |||
+ | <math>h[n] = u[-n]</math><br /> | ||
+ | |||
+ | <math>x[n] = 5^{n}u[n]</math><br /> | ||
+ | |||
+ | <math>y[n] = h[n]*x[n]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=-\infty}^{\infty}5^{k}u[k]u[n - k]</math><br /> | ||
+ | |||
+ | <math>y[n] = \sum_{k=0}^{\infty}5^{k}u[n - k]</math><br /> | ||
+ | |||
+ | since <math>u[n - k] = 1</math><br /> | ||
+ | |||
+ | <math>n \geq k</math><br /> | ||
+ | |||
+ | <math>u[k]=\begin{cases} | ||
+ | \sum_{k=0}^{n}n^{k}, & \mbox{if }n \geq 0 \\ | ||
+ | 0, & \mbox else | ||
+ | \end{cases}</math><br /> | ||
+ | <math>y[n] = u[n]\frac{1 - 5^{n + 1}}{1 - 5}</math><br /> | ||
[[ Main Page|Back to Main Page]] | [[ Main Page|Back to Main Page]] |
Latest revision as of 11:38, 30 November 2018
CT and DT Convolution Examples
In this course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain positive or negative input combinations. Here are some examples for how to deal with them.
CT Examples
Example 1: t is positive for both h(t) and x(t)
$ x(t) = u(t) $
$ h(t) = e^{-2t} u(t) $
$ y(t) = h(t)*x(t) $
$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $
$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau $
$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau $
Since $ u(t - \tau) = 1 $
$ \tau \leq t $
$ y(t)=\begin{cases} \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ 0, & \mbox else \end{cases} $
$ y(t)=\begin{cases} \frac{e^{-2t}-1}{-2} , & \mbox{if }t \geq 0 \\ 0, & \mbox else \end{cases} $
$ y(t)=\frac{u(t)}{2}(1-e^{-2t}) $
Example 2: t is negative for both h(t) and x(t)
$ x(t) = u(-t) $
$ h(t) = e^{3t} u(-t) $
$ y(t) = h(t)*x(t) $
$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $
$ y(t) = \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau $
$ y(t) = \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau $
Since $ u(-t + \tau) = 1 $
$ \tau \geq t $
$ y(t)=\begin{cases} \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t \leq 0 \\ 0, & \mbox else \end{cases} $
$ y(t)=\left. u(-t)\frac{e^{3\tau}}{3}\right |_t^0 $
$ y(t)=\frac{u(-t)}{3}(1 - e^{3t}) $
Example 3: t is negative for x(t) and positive for h(t)
$ x(t) = u(-t) $
$ h(t) = e^{-2t} u(t) $
$ \begin{align} y(t) &= h(t)*x(t)\\ &= \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau\\ & = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) dt\\ &= \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau \end{align} $
Since $ u(-t + \tau) = 1 $
$ \tau \geq t $
$ y(t)=\begin{cases} \int_{t}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t \geq 0 \\ \int_{0}^{\infty} e^{-2\tau}d\tau, & \mbox{if }t < 0 \end{cases} $
$ y(t)=\begin{cases} \frac{e^{-2t}}{2}, & \mbox{if }t \geq 0 \\ \frac{1}{2}, & \mbox{if }t < 0 \end{cases} $
DT Examples
Example 1: n is positive for both h[n] and x[n]
$ h[n] = u[n] $
$ x[n] = 4^{-n}u[n] $
$ y[n] = x[n]*h[n] $
$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $
$ y[n] = \sum_{k=-\infty}^{\infty}4^{-k}u[k]u[n - k] $
$ u[k]=\begin{cases} 1, & \mbox{if }k \geq 0 \\ 0, & \mbox{if }k < 0 \end{cases} $
$ y[n] = \sum_{k=0}^{\infty}4^{-k}u[n - k] $
$ u[n-k]=\begin{cases} 1, & \mbox{if }k \leq n \\ 0, & \mbox else \end{cases} $
$ y[n]=\begin{cases} \sum_{k=0}^{n}4^{-k}, & \mbox{if }n \geq 0 \\ 0, & \mbox{if }n < 0 \end{cases} $
$ y[n]=\begin{cases} \frac{1-(\frac{1}{4})^{n+1}}{1-\frac{1}{4}}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $
$ y[n]=\begin{cases} \frac{4-(\frac{1}{4})^{n}}{3}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $
$ y[n] = \frac{4-(\frac{1}{4})^{n}}{3}u[n] $
Example 2: n is negative for both h[n] and x[n]
$ h[n] = u[-n] $
$ x[n] = 3^{n}u[-n] $
$ y[n] = h[n]*x[n] $
$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $
$ y[n] = \sum_{k=-\infty}^{\infty}3^{k}u[-k]u[-n + k] $
$ y[n] = \sum_{k=-\infty}^{0}3^{k}u[-n + k] $
since $ u[-n + k] = 1 $
$ k \geq n $
$ u[k]=\begin{cases} \sum_{k=n}^{0}3^{k}, & \mbox{if }n \leq 0 \\ 0, & \mbox{if }n > 0 \end{cases} $
Substitute $ m = -k $
$ y[n] = u[-n]\sum_{m=-n}^{0}3^{-m} $
$ y[n] = u[-n]\sum_{m=0}^{-n}(\frac{1}{3})^{m} $
$ y[n] = u[-n]\frac{1 - (\frac{1}{3})^{-n + 1}}{1-\frac{1}{3}} $
$ y[n] = u[-n]\frac{3 - 3^{-n}}{2} $
Example 3: n is negative for x[n] and positive for h[n]
$ h[n] = u[-n] $
$ x[n] = 5^{n}u[n] $
$ y[n] = h[n]*x[n] $
$ y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n - k] $
$ y[n] = \sum_{k=-\infty}^{\infty}5^{k}u[k]u[n - k] $
$ y[n] = \sum_{k=0}^{\infty}5^{k}u[n - k] $
since $ u[n - k] = 1 $
$ n \geq k $
$ u[k]=\begin{cases} \sum_{k=0}^{n}n^{k}, & \mbox{if }n \geq 0 \\ 0, & \mbox else \end{cases} $
$ y[n] = u[n]\frac{1 - 5^{n + 1}}{1 - 5} $