Line 9: Line 9:
  
 
Example 1: t is positive for both h(t) and x(t)
 
Example 1: t is positive for both h(t) and x(t)
 +
  
 
<math>x(t) = u(t)</math><br />
 
<math>x(t) = u(t)</math><br />
 +
 
<math>h(t) = e^{-2t} u(t)</math><br />
 
<math>h(t) = e^{-2t} u(t)</math><br />
 +
 
<math>y(t) = h(t)*x(t)</math><br />
 
<math>y(t) = h(t)*x(t)</math><br />
 +
 
<math>y(t) =  \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br />
 
<math>y(t) =  \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br />
 +
 
<math>y(t) =  \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau</math><br />
 
<math>y(t) =  \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau</math><br />
 +
 
<math>y(t) =  \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau</math><br />
 
<math>y(t) =  \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau</math><br />
  
 
Since <math>u(t - \tau) = 1</math><br />
 
Since <math>u(t - \tau) = 1</math><br />
 +
 
<math>\tau <= t</math><br />
 
<math>\tau <= t</math><br />
  
Line 37: Line 44:
  
 
<math>x(t) = u(-t)</math><br />
 
<math>x(t) = u(-t)</math><br />
 +
 
<math>h(t) = e^{3t} u(-t)</math><br />
 
<math>h(t) = e^{3t} u(-t)</math><br />
 +
 
<math>y(t) = h(t)*x(t)</math><br />
 
<math>y(t) = h(t)*x(t)</math><br />
 +
 
<math>y(t) =  \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br />
 
<math>y(t) =  \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br />
 +
 
<math>y(t) =  \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau</math><br />
 
<math>y(t) =  \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau</math><br />
 +
 
<math>y(t) =  \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau</math><br />
 
<math>y(t) =  \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau</math><br />
 +
  
 
Since <math>u(-t + \tau) = 1</math><br />
 
Since <math>u(-t + \tau) = 1</math><br />
Line 53: Line 66:
  
 
<math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br />
 
<math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br />
 +
 
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br />
 
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br />
  
Line 60: Line 74:
  
 
<math>x(t) = u(-t)</math><br />
 
<math>x(t) = u(-t)</math><br />
 +
 
<math>h(t) = e^{-2t} u(t)</math><br />
 
<math>h(t) = e^{-2t} u(t)</math><br />
 +
 
<math>y(t) = h(t)*x(t)</math><br />
 
<math>y(t) = h(t)*x(t)</math><br />
 +
 
<math>y(t) =  \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br />
 
<math>y(t) =  \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau</math><br />
 +
 
<math>y(t) =  \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) d\tau</math><br />
 
<math>y(t) =  \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) d\tau</math><br />
 +
 
<math>y(t) =  \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau</math><br />
 
<math>y(t) =  \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau</math><br />
  
Line 76: Line 95:
  
 
<math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br />
 
<math>y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0</math><br />
 +
 
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br />
 
<math>y(t)=\frac{u(-t)}{3}(1 - e^{3t})</math><br />
  

Revision as of 13:28, 29 November 2018


CT and DT Convolution Examples

In this course, it is important to know how to do convolutions in both the CT and DT world. Sometimes there may be some confusion about how to deal with certain positive or negative input combinations. Here are some examples for how to deal with them.


CT Examples

Example 1: t is positive for both h(t) and x(t)


$ x(t) = u(t) $

$ h(t) = e^{-2t} u(t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(t - \tau) d\tau $

$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(t - \tau) d\tau $

Since $ u(t - \tau) = 1 $

$ \tau <= t $

$ y(t)=\begin{cases} \int_{0}^{t} e^{-2\tau}d\tau, & \mbox{if }t>=0 \\ 0, & \mbox else \end{cases} $

$ y(t)=\begin{cases} \frac{e^{-2t}-1}{-2} , & \mbox{if }t>=0 \\ 0, & \mbox else \end{cases} $

$ y(t)=\frac{u(t)}{2}(1-e^{-2t})<br /> Example 2: t is negative for both h(t) and x(t) <math>x(t) = u(-t) $

$ h(t) = e^{3t} u(-t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{3\tau} u(-\tau)u(-(t - \tau)) d\tau $

$ y(t) = \int_{-\infty}^{0} e^{3\tau} u(-t + \tau) d\tau $


Since $ u(-t + \tau) = 1 $
$ \tau >= t $

$ y(t)=\begin{cases} \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t<=0 \\ 0, & \mbox else \end{cases} $


$ y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0 $

$ y(t)=\frac{u(-t)}{3}(1 - e^{3t}) $


Example 3: t is negative for x(t) and positive for h(t)

$ x(t) = u(-t) $

$ h(t) = e^{-2t} u(t) $

$ y(t) = h(t)*x(t) $

$ y(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau) d\tau $

$ y(t) = \int_{-\infty}^{\infty} e^{-2\tau} u(\tau)u(-(t - \tau)) d\tau $

$ y(t) = \int_{0}^{\infty} e^{-2\tau} u(-t + \tau) d\tau $

Since $ u(-t + \tau) = 1 $
$ \tau >= t $

$ y(t)=\begin{cases} \int_{t}^{0} e^{3\tau}d\tau, & \mbox{if }t<=0 \\ 0, & \mbox else \end{cases} $


$ y(t)=u(-t)\frac{e^{3\tau}}{3} \mbox from t to 0 $

$ y(t)=\frac{u(-t)}{3}(1 - e^{3t}) $


DT Examples

Back to Main Page

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin