Line 1: Line 1:
 
= CTFT of periodic signals and some properties with proofs=
 
= CTFT of periodic signals and some properties with proofs=
 
===== - Fourier series of periodic signals =====
 
 
  
 
{| border="1" class="wikitable"
 
{| border="1" class="wikitable"
Line 31: Line 28:
 
|-}
 
|-}
  
===== - Properties of the Continuous-time Fourier Transform =====
 
  
  
 
{| border="1" class="wikitable"
 
{| border="1" class="wikitable"
 
|-
 
|-
! name
+
! Name
 
! Property  
 
! Property  
 
|-
 
|-

Revision as of 15:24, 14 November 2018

CTFT of periodic signals and some properties with proofs

Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum_{k=-\infty}^{\infty}u(t+5k) - u(t-1+5k) $
Name Property
Linearity
Time Shifting
Frequency Shifting
Conjugation
Scaling
Multiplication
Convolution
Differentiation
Parseval's Relation

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood