Line 29: Line 29:
 
|
 
|
 
|
 
|
 +
|-}
 +
 +
===== - Properties of the Continuous-time Fourier Transform =====
 +
{| border="1" class="wikitable"
 
|-
 
|-
 +
! Function
 +
! CTFT
 +
! Proof
 +
|-}

Revision as of 15:19, 14 November 2018

CTFT of periodic signals and some properties with proofs

- Fourier series of periodic signals
- Properties of the Continuous-time Fourier Transform
Function CTFT Proof
$ sin(\omega_0t) $ $ \frac{\pi}{j}(\delta(\omega - \omega_0) - \delta(\omega+\omega_0)) $
$ cos(\omega_0t) $ $ \pi(\delta(\omega - \omega_0) + \delta(\omega+\omega_0)) $
$ e^{j\omega_0t} $ $ 2\pi\delta(\omega - \omega_0) $
$ \sum_{k=-\infty}^{\infty}u(t+5k) - u(t-1+5k) $
Function CTFT Proof

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach