m
 
Line 83: Line 83:
 
E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\
 
E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\
 
&=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\
 
&=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\
&=-(xe^{-lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\
+
&=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\
 
&=\frac{1}{x}
 
&=\frac{1}{x}
 
\end{align}</math>
 
\end{align}</math>
Line 90: Line 90:
 
E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\
 
E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\
 
&=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\
 
&=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\
&=-(x^2e^{-lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\
+
&=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\
 
&=\frac{2}{x^2}
 
&=\frac{2}{x^2}
 
\end{align}</math>
 
\end{align}</math>

Latest revision as of 20:02, 5 August 2018


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2013



Part 3

Let $ X $ be an exponential random variable with parameter $ \lambda $, so that $ f_X(x)=\lambda{exp}(-\lambda{x})u(x) $. Find the variance of $ X $. You must show all of your work.


Solution 1

$ Var(X)=E(X^2)-E(X)^2 $

First,

$ E(X^2)=\int_0^{\infty}x^2\lambda{e}^{-\lambda{x}}dx $

Since

$ \begin{array}{l}\int{x}^2\lambda{e}^{-\lambda{x}}dx\\ =\int -x^2 de^{-\lambda x}\\ =-x^2e^{-{\lambda}x}+{\int}2xe^{-{\lambda}x}dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}+{\int}\frac{e^{-{\lambda}x}}{\lambda}2dx\\ =-x^2e^{-{\lambda}x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x} \end{array} $,

We have

$ E(X^2)=-x^2e^{-\lambda x}-\frac{2x}{\lambda}e^{\lambda x}-\frac{2}{\lambda^2}e^{\lambda x}|_0^\infty $

By L'Hospital's rule, we have

$ \lim_{x\to \infty}x^2e^{-\lambda x} = \lim_{x\to \infty}\frac{x^2}{e^{-\lambda x}}=\lim_{x\to \infty}\frac{2x}{\lambda e^{\lambda x}}=\lim_{x\to \infty}\frac{2}{\lambda^2e^{\lambda x}}=0 $

and

$ \lim_{x\to \infty}xe^{\lambda x} = \lim_{x\to \infty} \frac{x}{e^{\lambda x}}=\lim_{x\to \infty} \frac{1}{\lambda e^{\lambda x}} = 0 $.

Therefore,

$ E(X) = \frac{2}{\lambda^2} $.

Then we take a look at $ E(X) $.

$ E(X)=\int_0^{\infty}x\lambda{e}^{-\lambda{x}}dx $

$ \begin{array}{l} \int x\lambda{e}^{-\lambda{x}}dx\\ =\int xde^(\lambda x)\\ =-xe^{-\lambda x}+\int e^{\lambda x}dx\\ =-xe^{-\lambda x}-\frac{1}{x}e^{\lambda x}\\ \end{array} $

Similar to the calculation of $ E(X^2) $,

$ E(X)=\frac{1}{\lambda} $.

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{2}{\lambda^2}-\frac{1}{\lambda^2}=\frac{1}{\lambda^2} $.


Solution 2

$ \begin{align} E(X)&=\int_{-\infty}^{+\infty}xp(x)dx\\ &=\int_{0}^{\infty}x\lambda e^{-\lambda x}dx\\ &=-(xe^{-\lambda x}|_0^{\infty}-\int_0^{\infty}e^{-\lambda x}dx)\\ &=\frac{1}{x} \end{align} $

$ \begin{align} E(X^2)&=\int_{-\infty}^{+\infty}x^2p(x)dx\\ &=\int_{0}^{\infty}x^2 \lambda e^{-\lambda x}dx\\ &=-(x^2e^{-\lambda x}|_0^{\infty}-\int_0^{\infty}2xe^{-\lambda x}dx)\\ &=\frac{2}{x^2} \end{align} $

Therefore,

$ Var(X)=E(X^2)-E(X)^2=\frac{1}{\lambda^2} $

Critique on Solution 2:

Solution 2 is correct. In addition, calculating $ E(X) $ first is better since the result can be used in calculating $ E(X^2) $.


Back to QE CS question 1, August 2013

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics