(2 intermediate revisions by the same user not shown)
Line 10: Line 10:
 
   X(<math>\omega</math>) = 0 for <math>|\omega|>\omega_m</math>
 
   X(<math>\omega</math>) = 0 for <math>|\omega|>\omega_m</math>
  
  3. <math> 2\pi/T = \omega_s > 2\omega_m</math>
+
  3. <math> 2\pi/T = \omega_s > 2\omega_m</math> (Nyquist Condition)
  
 
Then x(t) is uniquely recoverable.
 
Then x(t) is uniquely recoverable.
  
 
Here is a block diagram of sampling and reconstruction using a LPF:
 
Here is a block diagram of sampling and reconstruction using a LPF:
[[File:BlockDSamp|block diagram of sampling]]
+
 
 +
[[File:BlockDSamp.PNG|frameless|left|block diagram of sampling]]
  
 
[[ 2018 Spring ECE 301 Boutin|Back to 2018 Spring ECE 301 Boutin]]
 
[[ 2018 Spring ECE 301 Boutin|Back to 2018 Spring ECE 301 Boutin]]

Latest revision as of 14:13, 30 April 2018


Explanation of Sampling Theorem

The sampling theorem:

1. for x(nT) to be equally spaced samples of x(t), while n=0, +1, -1, +2, -2, ...
2. x(t) is band limited.
  X($ \omega $) = 0 for $ |\omega|>\omega_m $
3. $  2\pi/T = \omega_s > 2\omega_m $ (Nyquist Condition)

Then x(t) is uniquely recoverable.

Here is a block diagram of sampling and reconstruction using a LPF:

block diagram of sampling

Back to 2018 Spring ECE 301 Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett