Line 4: Line 4:
  
 
The sampling theorem:  
 
The sampling theorem:  
 +
 
  1. for x(nT) to be equally spaced samples of x(t), while n=0, +1, -1, +2, -2, ...
 
  1. for x(nT) to be equally spaced samples of x(t), while n=0, +1, -1, +2, -2, ...
 +
 
  2. x(t) is band limited.
 
  2. x(t) is band limited.
 
   X(<math>\omega</math>) = 0 for <math>|\omega|>\omega_m</math>
 
   X(<math>\omega</math>) = 0 for <math>|\omega|>\omega_m</math>
 +
 
  3. <math> 2\pi/T = \omega_s > 2\omega_m</math>
 
  3. <math> 2\pi/T = \omega_s > 2\omega_m</math>
 +
 +
Then x(t) is uniquely recoverable.
 +
 +
 
[[ 2018 Spring ECE 301 Boutin|Back to 2018 Spring ECE 301 Boutin]]
 
[[ 2018 Spring ECE 301 Boutin|Back to 2018 Spring ECE 301 Boutin]]

Revision as of 13:57, 30 April 2018


Explanation of Sampling Theorem

The sampling theorem:

1. for x(nT) to be equally spaced samples of x(t), while n=0, +1, -1, +2, -2, ...
2. x(t) is band limited.
  X($ \omega $) = 0 for $ |\omega|>\omega_m $
3. $  2\pi/T = \omega_s > 2\omega_m $

Then x(t) is uniquely recoverable.


Back to 2018 Spring ECE 301 Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett