Line 32: Line 32:
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math>
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f)</math>
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt </math><br/>
 
|<math>\mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt </math><br/>
<math>c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt </math><br/>
+
<math>=c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt </math><br/>
<math>c_1G(f) + c_2H(f)</math><br/>
+
<math>=c_1G(f) + c_2H(f)</math><br/>
 
|-
 
|-
  
 
|-
 
|-
 
}
 
}

Revision as of 20:23, 22 April 2018


Table of CT Fourier Series Coefficients and Properties

Fourier series Coefficients

Function Fourier Series Coefficients


Properties of CT Fourier systems

}
Property Name Property Proof
Linearity $ \mathfrak{F}(c_1g(t) + c_2h(t) = c_1G(f) + c_2H(f) $ $ \mathfrak{F}(c_1g(t) + c_2h(t) = \int_{-\infty}^\infty c_1g(t) dt + \int_{-\infty}^\infty c_2h(t) dt $

$ =c_1\int_{-\infty}^\infty g(t)e^{i2\pi ft} dt + c_2 \int_{-\infty}^\infty g(t)e^{i2\pi ft} dt $
$ =c_1G(f) + c_2H(f) $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal